Photonics provide an efficient way to implement quantum walks, the quantum analog of classical random walks, which demonstrate rich physics with potential applications. However, most photonic quantum walks do not involve photon interactions, which limits their potential to explore strongly correlated many-body physics of light. We propose a strongly interacting discrete-time photonic quantum walk using a network of single atom beamsplitters. We calculate output statistics of the quantum walk for the case of two photons, which reveals the strongly correlated transport of photons. Particularly, the walk can exhibit either bosonlike or fermionlike statistics which is tunable by postselecting the two-photon detection time interval. Also, the walk can sort different types of two-photon bound states into distinct pairs of output ports under certain conditions. These unique phenomena show that our quantum walk is an intriguing platform to explore strongly correlated quantum many-body states of light. Finally, we propose an experimental realization based on time-multiplexed synthetic dimensions. 
                        more » 
                        « less   
                    
                            
                            Positive operator-valued measure for two-photon detection via sum-frequency generation
                        
                    
    
            Spontaneous parametric down conversion (PDC), in the perturbative limit, can be considered as a probabilistic splitting of one input photon into two output photons. Conversely, sum-frequency generation (SFG) implements the reverse process of combining two input photons into one. Here we show that a single-photon projective measurement in the temporal-mode basis of the output photon of a two-photon SFG process affects a generalized measurement on the input two-photon state. We describe the positive operator-valued measure (POVM) associated with such a measurement and show that its elements are proportional to the two-photon states produced by the time-reversed PDC process. Such a detection acts as a joint measurement on two photons and is thus an important component of many quantum information processing protocols relying on photonic entanglement. Using the retrodictive approach, we analyze the properties of the two-photon POVM that are relevant for quantum protocols exploiting two-photon states and measurements. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1839216
- PAR ID:
- 10285997
- Date Published:
- Journal Name:
- Physical review and Physical review letters index
- Volume:
- 103
- ISSN:
- 0094-0003
- Page Range / eLocation ID:
- 043711
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Directing indistinguishable photons from one input port into separate output ports is a fundamental operation in quantum information processing. The simplest scheme for achieving routing beyond random chance uses the photon blockade effect of a two-level emitter. But this approach is limited by a time-energy uncertainty relation. We show that a linear optical unitary transformation applied after the atom enables splitting efficiencies that exceed this time-energy limit. We show that the linear optical unitary improves the splitting efficiency from 67% to 82% for unentangled photon inputs, and from 77% to 90% for entangled photon inputs. We then optimize the temporal mode profile of the entangled photon wave function to attain the optimal splitting efficiency of 92%, a significant improvement over previous limits derived using a two-level atom alone. These results provide a path towards optimizing single photon nonlinearities and engineering programmable and robust photon-photon interactions for practical, high-fidelity quantum operations.more » « less
- 
            Abstract We determine the optimal measurement that maximizes the average information gain about the state of a qubit system. The qubit is prepared in one of two known states with known prior probabilities. To treat the problem analytically we employ the formalism developed for the maximum confidence quantum state discrimination strategy and obtain the POVM which optimizes the information gain for the entire parameter space of the system. We show that the optimal measurement coincides exactly with the minimum-error quantum measurement only for two pure states, or when the two states have the same Bloch radius or they are on the same diagonal of the Bloch disk.more » « less
- 
            Homodyne measurements are a widely used quantum measurement. Using a coherent state of large amplitude as the local oscillator, it can be shown that the quantum homodyne measurement limits to a field quadrature measurement. In this work, we give an example of a general idea: injecting non-classical states as a local oscillator can led to non-classical measurements. Specifically, we consider injecting a superposition of coherent states, a Schrödinger cat state, as a local oscillator. We derive the Kraus operators and the positive operator-valued measure (POVM) in this situation and show the POVM is a reflection symmetric quadrature measurement when the coherent state amplitudes are large.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    