skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The role of two-photon entanglement in sum-frequency generation
The theory of sum-frequency generation (SFG) as a two-photon measurement process is used to infer the role of two-photon entanglement in this process, and an experimental setup and preliminary data are presented as a way towards quantifying the dependence of SFG on entanglement.  more » « less
Award ID(s):
1839216
PAR ID:
10352654
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Quantum Information and Measurement 2021
Page Range / eLocation ID:
W2B.3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Spontaneous parametric down conversion (PDC), in the perturbative limit, can be considered as a probabilistic splitting of one input photon into two output photons. Conversely, sum-frequency generation (SFG) implements the reverse process of combining two input photons into one. Here we show that a single-photon projective measurement in the temporal-mode basis of the output photon of a two-photon SFG process affects a generalized measurement on the input two-photon state. We describe the positive operator-valued measure (POVM) associated with such a measurement and show that its elements are proportional to the two-photon states produced by the time-reversed PDC process. Such a detection acts as a joint measurement on two photons and is thus an important component of many quantum information processing protocols relying on photonic entanglement. Using the retrodictive approach, we analyze the properties of the two-photon POVM that are relevant for quantum protocols exploiting two-photon states and measurements. 
    more » « less
  2. If a boundary between two static media is moving with a constant superluminal velocity, or there is a sudden change of the refractive index with time, this yields generation of entangled pairs of photons out of vacuum propagating in the opposite directions. Here we show that during this process, entanglement of Minkowski vacuum is transferred to the entanglement of the generated photon pairs. If initially an electromagnetic pulse is present in the medium the photon generation is stimulated into the pulse mode, and since photons are created as entangled pairs the counter-propagating photon partners produce a pulse moving in the opposite direction, which is known as time reflection. Thus, time reflection occurs due to stimulated generation of the entangled photon pairs out of entangled vacuum and no photons in the original pulse are in fact being reflected. This is different from the mechanism of light reflection from spatial inhomogeneities for which no photons are generated. 
    more » « less
  3. Abstract The nature of dark matter is unknown and calls for a systematical search. For axion dark matter, such a search relies on finding feeble random noise arising from the weak coupling between dark matter and microwave haloscopes. We model such process as a quantum channel and derive the fundamental precision limit of noise sensing. An entanglement-assisted strategy based on two-mode squeezed vacuum is thereby demonstrated optimal, while the optimality of a single-mode squeezed vacuum is found limited to the lossless case. We propose a “nulling” measurement (squeezing and photon counting) to achieve the optimal performances. In terms of the scan rate, even with 20-decibel of strength, single-mode squeezing still underperforms the vacuum limit which is achieved by photon counting on vacuum input; while the two-mode squeezed vacuum provides large and close-to-optimum advantage over the vacuum limit, thus more exotic quantum resources are no longer required. Our results highlight the necessity of entanglement assistance and microwave photon counting in dark matter search. 
    more » « less
  4. The purpose of this tutorial paper is to present a broad overview of photon-pair generation through the spontaneous four wave mixing (SFWM) process in optical fibers. Progress in optical fiber technology means that today we have at our disposal a wide variety of types of fiber, which, together with the fact that SFWM uses two pump fields, implies a truly remarkable versatility in the resulting possible photon-pair properties. We discuss how the interplay of frequency, transverse mode, and polarization degrees of freedom—the first linked to the latter two through fiber dispersion—leads to interesting entanglement properties both in individual degrees of freedom and also permitting hybrid and hyper entanglement in combinations of degrees of freedom. This tutorial covers methods for photon-pair factorability, frequency tunability, and SFWM bandwidth control, the effect of frequency non-degenerate and counterpropagating pumps, as well as methods for characterizing photon pairs generated in optical fibers. 
    more » « less
  5. We study entanglement created between two isolated qubits by interaction with entangled-photon pairs obtained by parametric down-conversion of a laser pump field. The induced entanglement is quantified using the mixed state Concurrence proposed by Wootters et al. [Phys. Rev. Lett. 78, 5022 (1997)]. A universal value of qubit-entanglement, which is independent on the photon-pair wavefunction is identified to leading order in the qubit–field interaction and the pump field amplitude. The qubit entanglement decreases at higher laser pump intensities due to interference between the entangled photon pairs, which creates excitations in the qubit system. Maximal Concurrence is produced by only generating coherences between the ground and the highest excited qubit states. 
    more » « less