The ultrafast spontaneous electron-density fluctuation dynamics in molecules is studied theoretically by off-resonant multiple X-ray diffraction events. The time- and wavevector-resolved photon-coincidence signals give an image of electron-density fluctuations expressed through the four-point correlation function of the charge density in momentum space. A Fourier transform of the signal provides a real-space image of the multipoint charge-density correlation functions, which reveal snapshots of the evolving electron density in between the diffraction events. The proposed technique is illustrated by ab initio simulations of the momentum- and real-space inelastic scattering signals from a linear cyanotetracetylene molecule.
more »
« less
Mapping static core-holes and ring-currents with X-ray scattering
Measuring the attosecond movement of electrons in molecules is challenging due to the high temporal and spatial resolutions required. X-ray scattering-based methods are promising, but many questions remain concerning the sensitivity of the scattering signals to changes in density, as well as the means of reconstructing the dynamics from these signals. In this paper, we present simulations of stationary core-holes and electron dynamics following inner-shell ionization of the oxazole molecule. Using a combination of time-dependent density functional theory simulations along with X-ray scattering theory, we demonstrate that the sudden core-hole ionization produces a significant change in the X-ray scattering response and how the electron currents across the molecule should manifest as measurable modulations to the time dependent X-ray scattering signal. This suggests that X-ray scattering is a viable probe for measuring electronic processes at time scales faster than nuclear motion.
more »
« less
- Award ID(s):
- 1953839
- PAR ID:
- 10286097
- Date Published:
- Journal Name:
- Faraday Discussions
- Volume:
- 228
- ISSN:
- 1359-6640
- Page Range / eLocation ID:
- 60 to 81
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Resonant soft X-ray scattering (RSoXS) probes structure with chemical sensitivity that is useful for determining the morphology of multiblock copolymers. However, the hyperspectral scattering data produced by this technique can be challenging to interpret. Here, we use computational scattering simulations to extract the microstructure of a model triblock copolymer from the energy-dependent scattering from RSoXS. An ABC triblock terpolymer formed from poly(4-methylcaprolactone) (P4MCL), poly(2,2,2-trifluoroethylacrylate) (PTFEA), and poly (dodecylacrylate) (PDDA), P4MCL- block -PTFEA- block -PDDA, was synthesized as the model triblock system. Through quantitative evaluation of simulated scattering data from a physics-informed set of candidate structure models against experimental RSoXS data, we find the best agreement with hexagonally packed core–shell cylinders. This result is also consistent with electron-density reconstruction from hard X-ray scattering data evaluated against electron-density maps generated with the same model set. These results demonstrate the utility of simulation-guided scattering analysis to study complex microstructures that are challenging to image by microscopy.more » « less
-
null (Ed.)Elementary processes associated with ionization of liquid water provide a framework for understanding radiation-matter interactions in chemistry and biology. Although numerous studies have been conducted on the dynamics of the hydrated electron, its partner arising from ionization of liquid water, H 2 O + , remains elusive. We used tunable femtosecond soft x-ray pulses from an x-ray free electron laser to reveal the dynamics of the valence hole created by strong-field ionization and to track the primary proton transfer reaction giving rise to the formation of OH. The isolated resonance associated with the valence hole (H 2 O + /OH) enabled straightforward detection. Molecular dynamics simulations revealed that the x-ray spectra are sensitive to structural dynamics at the ionization site. We found signatures of hydrated-electron dynamics in the x-ray spectrum.more » « less
-
Elementary processes associated with ionization of liquid water provide a framework for understanding radiation-matter interactions in chemistry and biology. Although numerous studies have been conducted on the dynamics of the hydrated electron, its partner arising from ionization of liquid water, H2O+, remains elusive. We used tunable femtosecond soft x-ray pulses from an x-ray free electron laser to reveal the dynamics of the valence hole created by strong-field ionization and to track the primary proton transfer reaction giving rise to the formation of OH. The isolated resonance associated with the valence hole (H2O+/OH) enabled straightforward detection. Molecular dynamics simulations revealed that the x-ray spectra are sensitive to structural dynamics at the ionization site. We found signatures of hydrated-electron dynamics in the x-ray spectrum.more » « less
-
Abstract Advances in x-ray free electron lasers have made ultrafast scattering a powerful method for investigating molecular reaction kinetics and dynamics. Accurate measurement of the ground-state, static scattering signals of the reacting molecules is pivotal for these pump-probe x-ray scattering experiments as they are the cornerstone for interpreting the observed structural dynamics. This article presents a data calibration procedure, designed for gas-phase x-ray scattering experiments conducted at the Linac Coherent Light Source x-ray Free-Electron Laser at SLAC National Accelerator Laboratory, that makes it possible to derive a quantitative dependence of the scattering signal on the scattering vector. A self-calibration algorithm that optimizes the detector position without reference to a computed pattern is introduced. Angle-of-scattering corrections that account for several small experimental non-idealities are reported. Their implementation leads to near quantitative agreement with theoretical scattering patterns calculated withab-initiomethods as illustrated for two x-ray photon energies and several molecular test systems.more » « less
An official website of the United States government

