Abstract SummaryMultiple sequence alignment is a basic part of many bioinformatics pipelines, including in phylogeny estimation, prediction of structure for both RNAs and proteins, and metagenomic sequence analysis. Yet many sequence datasets exhibit substantial sequence length heterogeneity, both because of large insertions and deletions in the evolutionary history of the sequences and the inclusion of unassembled reads or incompletely assembled sequences in the input. A few methods have been developed that can be highly accurate in aligning datasets with sequence length heterogeneity, with UPP one of the first methods to achieve good accuracy, and WITCH a recent improvement on UPP for accuracy. In this article, we show how we can speed up WITCH. Our improvement includes replacing a critical step in WITCH (currently performed using a heuristic search) by a polynomial time exact algorithm using Smith–Waterman. Our new method, WITCH-NG (i.e. ‘next generation WITCH’) achieves the same accuracy but is substantially faster. WITCH-NG is available at https://github.com/RuneBlaze/WITCH-NG. Availability and implementationThe datasets used in this study are from prior publications and are freely available in public repositories, as indicated in the Supplementary Materials. Supplementary informationSupplementary data are available at Bioinformatics Advances online.
more »
« less
An alignment-free heuristic for fast sequence comparisons with applications to phylogeny reconstruction
Abstract Background Alignment-free methods for sequence comparisons have become popular in many bioinformatics applications, specifically in the estimation of sequence similarity measures to construct phylogenetic trees. Recently, the average common substring measure, ACS , and its k -mismatch counterpart, ACS k , have been shown to produce results as effective as multiple-sequence alignment based methods for reconstruction of phylogeny trees. Since computing ACS k takes O ( n log k n ) time and hence impractical for large datasets, multiple heuristics that can approximate ACS k have been introduced. Results In this paper, we present a novel linear-time heuristic to approximate ACS k , which is faster than computing the exact ACS k while being closer to the exact ACS k values compared to previously published linear-time greedy heuristics. Using four real datasets, containing both DNA and protein sequences, we evaluate our algorithm in terms of accuracy, runtime and demonstrate its applicability for phylogeny reconstruction. Our algorithm provides better accuracy than previously published heuristic methods, while being comparable in its applications to phylogeny reconstruction. Conclusions Our method produces a better approximation for ACS k and is applicable for the alignment-free comparison of biological sequences at highly competitive speed. The algorithm is implemented in Rust programming language and the source code is available at https://github.com/srirampc/adyar-rs .
more »
« less
- PAR ID:
- 10286101
- Date Published:
- Journal Name:
- BMC Bioinformatics
- Volume:
- 21
- Issue:
- S6
- ISSN:
- 1471-2105
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Motivation RNA secondary structure prediction is widely used to understand RNA function. Recently, there has been a shift away from the classical minimum free energy methods to partition function-based methods that account for folding ensembles and can therefore estimate structure and base pair probabilities. However, the classical partition function algorithm scales cubically with sequence length, and is therefore prohibitively slow for long sequences. This slowness is even more severe than cubic-time free energy minimization due to a substantially larger constant factor in runtime. Results Inspired by the success of our recent LinearFold algorithm that predicts the approximate minimum free energy structure in linear time, we design a similar linear-time heuristic algorithm, LinearPartition, to approximate the partition function and base-pairing probabilities, which is shown to be orders of magnitude faster than Vienna RNAfold and CONTRAfold (e.g. 2.5 days versus 1.3 min on a sequence with length 32 753 nt). More interestingly, the resulting base-pairing probabilities are even better correlated with the ground-truth structures. LinearPartition also leads to a small accuracy improvement when used for downstream structure prediction on families with the longest length sequences (16S and 23S rRNAs), as well as a substantial improvement on long-distance base pairs (500+ nt apart). Availability and implementation Code: http://github.com/LinearFold/LinearPartition; Server: http://linearfold.org/partition. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
With the increased availability of sequence data and even of fully sequenced and assembled genomes, phylogeny estimation of very large trees (even of hundreds of thousands of sequences) is now a goal for some biologists. Yet, the construction of these phylogenies is a complex pipeline presenting analytical and computational challenges, especially when the number of sequences is very large. In the past few years, new methods have been developed that aim to enable highly accurate phylogeny estimations on these large datasets, including divide-and-conquer techniques for multiple sequence alignment and/or tree estimation, methods that can estimate species trees from multi-locus datasets while addressing heterogeneity due to biological processes (e.g. incomplete lineage sorting and gene duplication and loss), and methods to add sequences into large gene trees or species trees. Here we present some of these recent advances and discuss opportunities for future improvements. This article is part of a discussion meeting issue ‘Genomic population structures of microbial pathogens’.more » « less
-
WITCH: Improved Multiple Sequence Alignment Through Weighted Consensus Hidden Markov Model AlignmentAccurate multiple sequence alignment is challenging on many data sets, including those that are large, evolve under high rates of evolution, or have sequence length heterogeneity. While substantial progress has been made over the last decade in addressing the first two challenges, sequence length heterogeneity remains a significant issue for many data sets. Sequence length heterogeneity occurs for biological and technological reasons, including large insertions or deletions (indels) that occurred in the evolutionary history relating the sequences, or the inclusion of sequences that are not fully assembled. Ultra-large alignments using Phylogeny-Aware Profiles (UPP) (Nguyen et al. 2015) is one of the most accurate approaches for aligning data sets that exhibit sequence length heterogeneity: it constructs an alignment on the subset of sequences it considers ‘‘full-length,’’ represents this ‘‘backbone alignment’’ using an ensemble of hidden Markov models (HMMs), and then adds each remaining sequence into the backbone alignment based on an HMM selected for that sequence from the ensemble. Our new method, WeIghTed Consensus Hmm alignment (WITCH), improves on UPP in three important ways: first, it uses a statistically principled technique to weight and rank the HMMs; second, it uses k > 1 HMMs from the ensemble rather than a single HMM; and third, it combines the alignments for each of the selected HMMs using a consensus algorithm that takes the weights into account. We show that this approach provides improved alignment accuracy compared with UPP and other leading alignment methods, as well as improved accuracy for maximum likelihood trees based on these alignments.more » « less
-
Dinoflagellates of the family Symbiodiniaceae are predominantly essential symbionts of corals and other marine organisms. Recent research reveals extensive genome sequence divergence among Symbiodiniaceae taxa and high phylogenetic diversity hidden behind subtly different cell morphologies. Using an alignment-free phylogenetic approach based on sub-sequences of fixed length k (i.e. k -mers), we assessed the phylogenetic signal among whole-genome sequences from 16 Symbiodiniaceae taxa (including the genera of Symbiodinium , Breviolum , Cladocopium , Durusdinium and Fugacium ) and two strains of Polarella glacialis as outgroup. Based on phylogenetic trees inferred from k -mers in distinct genomic regions (i.e. repeat-masked genome sequences, protein-coding sequences, introns and repeats) and in protein sequences, the phylogenetic signal associated with protein-coding DNA and the encoded amino acids is largely consistent with the Symbiodiniaceae phylogeny based on established markers, such as large subunit rRNA. The other genome sequences (introns and repeats) exhibit distinct phylogenetic signals, supporting the expected differential evolutionary pressure acting on these regions. Our analysis of conserved core k -mers revealed the prevalence of conserved k -mers (>95% core 23-mers among all 18 genomes) in annotated repeats and non-genic regions of the genomes. We observed 180 distinct repeat types that are significantly enriched in genomes of the symbiotic versus free-living Symbiodinium taxa, suggesting an enhanced activity of transposable elements linked to the symbiotic lifestyle. We provide evidence that representation of alignment-free phylogenies as dynamic networks enhances the ability to generate new hypotheses about genome evolution in Symbiodiniaceae. These results demonstrate the potential of alignment-free phylogenetic methods as a scalable approach for inferring comprehensive, unbiased whole-genome phylogenies of dinoflagellates and more broadly of microbial eukaryotes.more » « less