skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quasi-Biennial Oscillation and Sudden Stratospheric Warmings during the Last Glacial Maximum
The quasi-biennial oscillation (QBO) and sudden stratospheric warmings (SSWs) during the Last Glacial Maximum (LGM) are investigated in simulations using the Whole Atmosphere Community Climate Model version 6 (WACCM6). We find that the period of QBO, which is 27 months in the preindustrial and modern climate simulations, was 33 months in the LGM simulation using the proxy sea surface temperatures (SSTs) and 41 months using the model-based LGM SSTs. We show that the longer QBO period in the LGM is due to weaker wave forcing. The WACCM6 simulations of the LGM, preindustrial, and modern climates do not support previous modeling work that suggests that the QBO amplitude is smaller (larger) in a warmer (colder) climate. We find that SSWs in the LGM occurred later in the year, as compared to the preindustrial and modern climate, but that time of the final warming was similar. The difference in SSW frequency is inconclusive.  more » « less
Award ID(s):
1821437
PAR ID:
10286147
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Atmosphere
Volume:
11
Issue:
9
ISSN:
2073-4433
Page Range / eLocation ID:
943
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Possible sources of the observed modulation of the tropical Madden‐Julian oscillation (MJO) by the stratospheric quasi‐biennial oscillation (QBO) and the 11‐year solar cycle are investigated using 41 years of reanalysis data and archived climate model data. Larger upward fluxes of extratropical planetary‐scale waves, leading in some cases to sudden stratospheric warmings (SSWs), are observed in late fall and early winter during the easterly phase of the QBO than during the westerly phase (the “Holton‐Tan effect”). A similar but smaller increase occurs, on average, during solar minima relative to solar maxima. In addition to the warming at high latitudes, extratropical wave forcing events produce cooling and reduced static stability in the tropical lower stratosphere. Here, it is found that if SSWs occur in early winter (before ∼mid‐January), the reduced static stability produces, on average, a statistically significant, lagged strengthening of the MJO. This therefore represents a possible mechanism for producing, or at least enhancing, the observed QBO and solar modulations of the MJO in boreal winter. An initial analysis of archived climate model data shows that at least one model version with realistic QBO and solar forcing and with 4 X CO2 forcings partly simulates both of these characteristics (QBO/solar modulation of early winter wave forcing and lagged strengthening of the MJO following early winter SSWs). However, the modeled MJO is insufficiently sensitive to QBO‐induced static stability reductions, precluding simulation of the QBO‐MJO connection. 
    more » « less
  2. Abstract Tropical gravity waves that are generated by convection are generally too small in scale and too high in frequency to be resolved in global climate models, yet their drag forces drive the important global‐scale quasi‐biennial oscillation (QBO) in the lower stratosphere, and models rely on parameterizations of gravity wave drag to simulate the QBO. We compare detailed properties of tropical parameterized gravity waves in the Whole Atmosphere Community Climate Model version 6 (WACCM6) with gravity waves observed by long‐duration superpressure balloons and also compare properties of parameterized convective latent heating with satellite data. Similarities and differences suggest that the WACCM6 parameterizations are excellent tools for representing tropical gravity waves, but the results also suggest detailed changes to the gravity wave parameterization tuning parameter assumptions that would bring the parameterized waves into much better agreement with observations. While WACCM6 currently includes only nonstationary gravity waves from convection, adding gravity waves generated by the steady component of the heating that are stationary relative to moving convective rain cells is likely to improve the simulation of the QBO in the model. The suggested changes have the potential to alleviate common biases in simulated QBO circulations in models. 
    more » « less
  3. Abstract The Brewer‐Dobson circulation during the Last Glacial Maximum (LGM) is investigated in simulations using the Whole Atmosphere Community Climate Model version 6. We examine vertical mass fluxes, age of stratospheric air, and the transformed Eulerian mean stream function and find that the modeled annual‐mean Brewer‐Dobson circulation during the LGM is almost everywhere slower than that in the modern climate (with or without anthropogenic ozone depleting substances). Compared to the modern climate, the annual‐mean tropical upwelling in the LGM is 11.3–16.9%, 11.2–15.8%, and 4.4–10.2% weaker, respectively, at 100, 70, and 30 hPa. Simulated decreases in annual‐mean mass fluxes at 70 and 100 hPa are caused by a weaker parameterized orographic gravity wave drag and resolved wave drag, respectively. 
    more » « less
  4. Abstract Climate change is a prevalent threat, and it is unlikely that current mitigation efforts will be enough to avoid unwanted impacts. One potential option to reduce climate change impacts is the use of stratospheric aerosol injection (SAI). Even if SAI is ultimately deployed, it might be initiated only after some temperature target is exceeded. The consequences of such a delay are assessed herein. This study compares two cases, with the same target global mean temperature of ∼1.5° C above preindustrial, but start dates of 2035 or a ‘delayed’ start in 2045. We make use of simulations in the Community Earth System Model version 2 with the Whole Atmosphere Coupled Chemistry Model version 6 (CESM2-WACCM6), using SAI under the SSP2-4.5 emissions pathway. We find that delaying the start of deployment (relative to the target temperature) necessitates lower net radiative forcing (−30%) and thus larger sulfur dioxide injection rates (+20%), even after surface temperatures converge, to compensate for the extra energy absorbed by the Earth system. Southern hemisphere ozone is higher from 2035 to 2050 in the delayed start scenario, but converges to the same value later in the century. However, many of the surface climate differences between the 2035 and 2045 start simulations appear to be small during the 10–25 years following the delayed SAI start, although longer simulations would be needed to assess any longer-term impacts in this model. In addition, irreversibilities and tipping points that might be triggered during the period of increased warming may not be adequately represented in the model but could change this conclusion in the real world. 
    more » « less
  5. Abstract Ice cores and other paleotemperature proxies, together with general circulation models, have provided information on past surface temperatures and the atmosphere's composition in different climates. Little is known, however, about past temperatures at high altitudes, which play a crucial role in Earth's radiative energy budget. Paleoclimate records at high‐altitude sites are sparse, and the few that are available show poor agreement with climate model predictions. These disagreements could be due to insufficient spatial coverage, spatiotemporal biases, or model physics; new records that can mitigate or avoid these uncertainties are needed. Here, we constrain the change in upper‐tropospheric temperature at the global scale during the Last Glacial Maximum (LGM) using the clumped‐isotope composition of molecular oxygen trapped in polar ice cores. Aided by global three‐dimensional chemical transport modeling, we exploit the intrinsic temperature sensitivity of the clumped‐isotope composition of atmospheric oxygen to infer that the upper troposphere (effective mean altitude 10–11 km) was 6–9°C cooler during the LGM than during the late preindustrial Holocene. A complementary energy balance approach supports a minor or negligible steepening of atmospheric lapse rates during the LGM, which is consistent with a range of climate model simulations. Proxy‐model disagreements with other high‐altitude records may stem from inaccuracies in regional hydroclimate simulation, possibly related to land‐atmosphere feedbacks. 
    more » « less