ABSTRACT We present spatially resolved two-dimensional maps and radial trends of the stellar populations and kinematics for a sample of six compact elliptical galaxies (cE) using spectroscopy from the Keck Cosmic Web Imager (KCWI). We recover their star formation histories, finding that all except one of our cEs are old and metal rich, with both age and metallicity decreasing toward their outer radii. We also use the integrated values within one effective radius to study different scaling relations. Comparing our cEs with others from the literature and from simulations we reveal the formation channel that these galaxies might have followed. All our cEs are fast rotators, with relatively high rotation values given their low ellipticites. In general, the properties of our cEs are very similar to those seen in the cores of more massive galaxies, and in particular, to massive compact galaxies. Five out of our six cEs are the result of stripping a more massive (compact or extended) galaxy, and only one cE is compatible with having been formed intrinsically as the low-mass compact object that we see today. These results further confirm that cEs are a mixed-bag of galaxies that can be formed following different formation channels, reporting for the first time an evolutionary link within the realm of compact galaxies (at all stellar masses).
more »
« less
How to form a wormhole
Abstract We provide a simple but very useful description of the process of wormhole formation. We place two massive objects in two parallel universes (modeled by two branes). Gravitational attraction between the objects competes with the resistance coming from the brane tension. For sufficiently strong attraction, the branes are deformed, objects touch and a wormhole is formed. Our calculations show that more massive and compact objects are more likely to fulfill the conditions for wormhole formation. This implies that we should be looking for wormholes either in the background of black holes and compact stars, or massive microscopic relics. Our formation mechanism applies equally well for a wormhole connecting two objects in the same universe.
more »
« less
- Award ID(s):
- 2014021
- PAR ID:
- 10286162
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 80
- Issue:
- 12
- ISSN:
- 1434-6044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We study classical wormhole solutions in 3D gravity with end-of-the-world (EOW) branes, conical defects, kinks, and punctures. These solutions compute statistical averages of an ensemble of boundary conformal field theories (BCFTs) related to universal asymptotics of OPE data extracted from the 2D conformal bootstrap. Conical defects connect BCFT bulk operators; branes join BCFT boundary intervals with identical boundary conditions; kinks (1D defects along branes) link BCFT boundary operators; and punctures (0D defects) are endpoints where conical defects terminate on branes. We provide evidence for a correspondence between the gravity theory and the ensemble. In particular, the agreement of theg-function dependence results from an underlying topological aspect of the on-shell EOW brane action, from which a BCFT analog of the Schlenker-Witten theorem also follows.more » « less
-
ABSTRACT TIC 470710327, a massive compact hierarchical triple-star system, was recently identified by NASA’s Transiting Exoplanet Survey Satellite. TIC 470710327 is comprised of a compact (1.10 d) circular eclipsing binary, with total mass $$\approx 10.9\!-\!13.2\, \rm {M_{\odot }}$$, and a more massive $$\approx 14\!-\!17\, \rm {M_{\odot }}$$ eccentric non-eclipsing tertiary in a 52.04 d orbit. Here, we present a progenitor scenario for TIC 470710327 in which ‘2 + 2’ quadruple dynamics result in Zeipel–Lidov–Kozai oscillations that lead to a contact phase of the more massive binary. In this scenario, the two binary systems should form in a very similar manner, and dynamics trigger the merger of the more massive binary either during late phases of star formation or several Myr after the zero-age main sequence, when the stars begin to expand. Any evidence that the tertiary is a highly magnetized (∼1–10 kG), slowly rotating blue main-sequence star would hint towards a quadruple origin. Finally, our scenario suggests that the population of inclined compact multiple-stellar systems is reduced into coplanar systems, via mergers, late during star formation or early in the main sequence. The elucidation of the origin of TIC 470710327 is crucial in our understanding of multiple massive star formation and evolution.more » « less
-
A<sc>bstract</sc> In models with extra dimensions, matter particles can be easily localized to a ‘brane world’, but gravitational attraction tends to spread out in the extra dimensions unless they are small. Strong warping gradients can help localize gravity closer to the brane. In this note we give a mathematically rigorous proof that the internal wave-function of the massless graviton is constant as an eigenfunction of the weighted Laplacian, and hence is a power of the warping as a bound state in an analogue Schrödinger potential. This holds even in presence of singularities induced by thin branes. We also reassess the status of AdS vacuum solutions where the graviton is massive. We prove a bound on scale separation for such models, as an application of our recent results on KK masses. We also use them to estimate the scale at which gravity is localized, without having to compute the spectrum explicitly. For example, we point out that localization can be obtained at least up to the cosmological scale in string/M-theory solutions with infinite-volume Riemann surfaces; and in a known class of$$ \mathcal{N} $$ = 4 models, when the number of NS5- and D5-branes is roughly equal.more » « less
-
Observations of X-ray binaries indicate a dearth of compact objects in the mass range from ∼2 − 5 M ⊙ . The existence of this (first mass) gap has been used to discriminate between proposed engines behind core-collapse supernovae. From LIGO/Virgo observations of binary compact remnant masses, several candidate first mass gap objects, either neutron stars (NSs) or black holes (BHs), were identified during the O3 science run. Motivated by these new observations, we study the formation of BH-NS mergers in the framework of isolated classical binary evolution, using population synthesis methods to evolve large populations of binary stars (Population I and II) across cosmic time. We present results on the NS to BH mass ratios ( q = M NS / M BH ) in merging systems, showing that although systems with a mass ratio as low as q = 0.02 can exist, typically BH-NS systems form with moderate mass ratios q = 0.1 − 0.2. If we adopt a delayed supernova engine, we conclude that ∼30% of BH-NS mergers may host at least one compact object in the first mass gap (FMG). Even allowing for uncertainties in the processes behind compact object formation, we expect the fraction of BH-NS systems ejecting mass during the merger to be small (from ∼0.6 − 9%). In our reference model, we assume: (i) the formation of compact objects within the FMG, (ii) natal NS/BH kicks decreased by fallback, (iii) low BH spins due to Tayler-Spruit angular momentum transport in massive stars. We find that ≲1% of BH-NS mergers will have any mass ejection and about the same percentage will produce kilonova bright enough to have a chance of being detected with a large (Subaru-class) 8 m telescope. Interestingly, all these mergers will have both a BH and an NS in the FMG.more » « less
An official website of the United States government

