skip to main content


Title: Low-mass compact elliptical galaxies: spatially resolved stellar populations and kinematics with the Keck Cosmic Web Imager
ABSTRACT We present spatially resolved two-dimensional maps and radial trends of the stellar populations and kinematics for a sample of six compact elliptical galaxies (cE) using spectroscopy from the Keck Cosmic Web Imager (KCWI). We recover their star formation histories, finding that all except one of our cEs are old and metal rich, with both age and metallicity decreasing toward their outer radii. We also use the integrated values within one effective radius to study different scaling relations. Comparing our cEs with others from the literature and from simulations we reveal the formation channel that these galaxies might have followed. All our cEs are fast rotators, with relatively high rotation values given their low ellipticites. In general, the properties of our cEs are very similar to those seen in the cores of more massive galaxies, and in particular, to massive compact galaxies. Five out of our six cEs are the result of stripping a more massive (compact or extended) galaxy, and only one cE is compatible with having been formed intrinsically as the low-mass compact object that we see today. These results further confirm that cEs are a mixed-bag of galaxies that can be formed following different formation channels, reporting for the first time an evolutionary link within the realm of compact galaxies (at all stellar masses).  more » « less
Award ID(s):
1828315
NSF-PAR ID:
10313053
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
503
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Compact elliptical (cE) galaxies remain an elusively difficult galaxy class to study. Recent observations have suggested that isolated and host-associated cEs have different formation pathways, while simulation studies have also shown different pathways can lead to a cE galaxy. However, a solid link has not been established, and the relative contributions of each pathway in a cosmological context remains unknown. Here, we combine a spatially resolved observational sample of cEs taken from the Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey with a matched sample of galaxies within the IllustrisTNG cosmological simulation to establish an overall picture of how these galaxies form. The observed cEs located near a host galaxy appear redder, smaller, and older than isolated cEs, supporting previous evidence for multiple formation pathways. Tracing the simulated cEs back through time, we find two main formation pathways; 32 ± 5 per cent formed via the stripping of a spiral galaxy by a larger host galaxy, while 68 ± 4 per cent formed through a gradual build-up of stellar mass in isolated environments. We confirm that cEs in different environments do indeed form via different pathways, with all isolated cEs in our sample having formed via in situ formation (i.e. none were ejected from a previous host), and 77 ± 6 per cent of host-associated cEs having formed via tidal stripping. Separating them by their formation pathway, we are able to reproduce the observed differences between isolated and host-associated cEs, showing that these differences can be fully explained by the different formation pathways dominating in each environment.

     
    more » « less
  2. null (Ed.)
    Context. The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: star birth and death, grain formation and destruction, and galactic inflows and outflows. Understanding such processes and their relative importance is essential to following galaxy evolution and the chemical enrichment through the cosmic epochs, and to interpreting current and future observations. Despite the importance of such topics, the contribution of different stellar sources to the chemical enrichment of galaxies, for example massive stars exploding as Type II supernovae (SNe) and low-mass stars, as well as the mechanisms driving the evolution of dust grains, such as for example grain growth in the ISM and destruction by SN shocks, remain controversial from both observational and theoretical viewpoints. Aims. In this work, we revise the current description of metal and dust evolution in the ISM of local low-metallicity dwarf galaxies and develop a new description of Lyman-break galaxies (LBGs) which are considered to be their high-redshift counterparts in terms of star formation, stellar mass, and metallicity. Our goal is to reproduce the observed properties of such galaxies, in particular (i) the peak in dust mass over total stellar mass (sMdust) observed within a few hundred million years; and (ii) the decrease in sMdust at a later time. Methods. We fitted spectral energy distribution of dwarf galaxies and LBGs with the “Code Investigating GALaxies Emission”, through which the total stellar mass, dust mass, and star formation rate are estimated. For some of the dwarf galaxies considered, the metal and gas content are available from the literature. We computed different prescriptions for metal and dust evolution in these systems (e.g. different initial mass functions for stars, dust condensation fractions, SN destruction, dust accretion in the ISM, and inflow and outflow efficiency), and we fitted the properties of the observed galaxies through the predictions of the models. Results. Only some combinations of models are able to reproduce the observed trend and simultaneously fit the observed properties of the galaxies considered. In particular, we show that (i) a top-heavy initial mass function that favours the formation of massive stars and a dust condensation fraction for Type II SNe of around 50% or more help to reproduce the peak of sMdust observed after ≈100 Myr from the beginning of the baryon cycle for both dwarf galaxies and LBGs; (ii) galactic outflows play a crucial role in reproducing the observed decline in sMdust with age and are more efficient than grain destruction from Type II SNe both in local galaxies and at high-redshift; (iii) a star formation efficiency (mass of gas converted into stars) of a few percent is required to explain the observed metallicity of local dwarf galaxies; and (iv) dust growth in the ISM is not necessary in order to reproduce the values of sMdust derived for the galaxies under study, and, if present, the effect of this process would be erased by galactic outflows. 
    more » « less
  3. Abstract

    We present the lifetime star formation histories (SFHs) for six ultrafaint dwarf (UFD;MV> − 7.0,4.9<log10(M*(z=0)/M)<5.5) satellite galaxies of M31 based on deep color–magnitude diagrams constructed from Hubble Space Telescope imaging. These are the first SFHs obtained from the oldest main-sequence turnoff of UFDs outside the halo of the Milky Way (MW). We find that five UFDs formed at least 50% of their stellar mass byz= 5 (12.6 Gyr ago), similar to known UFDs around the MW, but that 10%–40% of their stellar mass formed at later times. We uncover one remarkable UFD, Andxiii, which formed only 10% of its stellar mass byz= 5, and 75% in a rapid burst atz∼ 2–3, a result that is robust to choices of underlying stellar model and is consistent with its predominantly red horizontal branch. This “young” UFD is the first of its kind and indicates that not all UFDs are necessarily quenched by reionization, which is consistent with predictions from several cosmological simulations of faint dwarf galaxies. SFHs of the combined MW and M31 samples suggest reionization did not homogeneously quench UFDs. We find that the least-massive MW UFDs (M*(z= 5) ≲ 5 × 104M) are likely quenched by reionization, whereas more-massive M31 UFDs (M*(z= 5) ≳ 105M) may only have their star formation suppressed by reionization and quench at a later time. We discuss these findings in the context of the evolution and quenching of UFDs.

     
    more » « less
  4. Abstract

    Dwarf galaxies located in extremely underdense cosmic voids are excellent test beds for disentangling the effects of large-scale environments on galaxy formation and evolution. We present the first results of the Dwarfs in Void Environments Survey, which has obtained integral field spectroscopy for low-mass galaxies (M= 107–109M) located inside (N= 21) and outside (N= 9) cosmic voids using the Keck Cosmic Web Imager. Using measurements of stellar line-of-sight rotational velocityvrotand velocity dispersionσ, we test the tidal stirring hypothesis, which posits that dwarf spheroidal galaxies are formed through tidal interactions with more massive host galaxies. We measure low values ofvrot/σ≲ 2 for our sample of isolated dwarf galaxies, and we find no trend betweenvrot/σand the distance from a massive galaxydLout todL10Mpc. These suggest that dwarf galaxies can become dispersion-supported, “puffy” systems even in the absence of environmental effects like tidal interactions. We also find indications of an upward trend betweenvrot/σand galaxy stellar mass, perhaps implying that stellar disk formation depends on mass rather than environment. Although some of our conclusions may be slightly modified by systematic effects, our main result still holds: that isolated low-mass galaxies may form and remain as puffy systems rather than the dynamically cold disks predicted by classical galaxy formation theory.

     
    more » « less
  5. Abstract

    One of the most mysterious astrophysical states is the common envelope (CE) phase of binary evolution, in which two stars are enshrouded by the envelope shed by one of them. Interactions between the stars and the envelope shrinks the orbit. The CE can lead to mergers or to a subsequent phase of interactions. Mergers may involve any combination of two compact objects and/or stars. Some involving white dwarfs may produce Type Ia supernovae, while merging neutron stars may yield gamma-ray bursts, and merging compact objects of all kinds produce gravitational radiation. Since CEs can arise from a variety of different initial conditions, and due to the complexity of the processes involved, it is difficult to predict their end states. When many systems are being considered, as in population synthesis calculations, conservation principles are generally employed. Here we use angular momentum in a new way to derive a simple expression for the final orbital separation. This method provides advantages for the study of binaries and is particularly well suited to higher-order multiples, now considered to be important in the genesis of potential mergers. Here we focus on CEs in binaries, and the follow-up paper extends our formalism to multiple-star systems within which a CE occurs.

     
    more » « less