skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Matrix (factorization) reloaded: flexible methods for imputing genetic interactions with cross-species and side information
Abstract Motivation Mapping genetic interactions (GIs) can reveal important insights into cellular function and has potential translational applications. There has been great progress in developing high-throughput experimental systems for measuring GIs (e.g. with double knockouts) as well as in defining computational methods for inferring (imputing) unknown interactions. However, existing computational methods for imputation have largely been developed for and applied in baker’s yeast, even as experimental systems have begun to allow measurements in other contexts. Importantly, existing methods face a number of limitations in requiring specific side information and with respect to computational cost. Further, few have addressed how GIs can be imputed when data are scarce. Results In this article, we address these limitations by presenting a new imputation framework, called Extensible Matrix Factorization (EMF). EMF is a framework of composable models that flexibly exploit cross-species information in the form of GI data across multiple species, and arbitrary side information in the form of kernels (e.g. from protein–protein interaction networks). We perform a rigorous set of experiments on these models in matched GI datasets from baker’s and fission yeast. These include the first such experiments on genome-scale GI datasets in multiple species in the same study. We find that EMF models that exploit side and cross-species information improve imputation, especially in data-scarce settings. Further, we show that EMF outperforms the state-of-the-art deep learning method, even when using strictly less data, and incurs orders of magnitude less computational cost. Availability Implementations of models and experiments are available at: https://github.com/lrgr/EMF. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1632976
PAR ID:
10286166
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Bioinformatics
Volume:
36
Issue:
Supplement_2
ISSN:
1367-4803
Page Range / eLocation ID:
i866 to i874
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mulder, Nicola (Ed.)
    Abstract Motivation Leveraging cross-species information in protein function prediction can add significant power to network-based protein function prediction methods, because so much functional information is conserved across at least close scales of evolution. We introduce MUNDO, a new cross-species co-embedding method that combines a single-network embedding method with a co-embedding method to predict functional annotations in a target species, leveraging also functional annotations in a model species network. Results Across a wide range of parameter choices, MUNDO performs best at predicting annotations in the mouse network, when trained on mouse and human protein–protein interaction (PPI) networks, in the human network, when trained on human and mouse PPIs, and in Baker’s yeast, when trained on Fission and Baker’s yeast, as compared to competitor methods. MUNDO also outperforms all the cross-species methods when predicting in Fission yeast when trained on Fission and Baker’s yeast; however, in this single case, discarding the information from the other species and using annotations from the Fission yeast network alone usually performs best. Availability and implementation All code is available and can be accessed here: github.com/v0rtex20k/MUNDO. Supplementary information Supplementary data are available at Bioinformatics Advances online. Additional experimental results are on our github site. 
    more » « less
  2. Kelso, Janet (Ed.)
    Abstract Motivation Current methods for genotype imputation and phasing exploit the volume of data in haplotype reference panels and rely on hidden Markov models (HMMs). Existing programs all have essentially the same imputation accuracy, are computationally intensive and generally require prephasing the typed markers. Results We introduce a novel data-mining method for genotype imputation and phasing that substitutes highly efficient linear algebra routines for HMM calculations. This strategy, embodied in our Julia program MendelImpute.jl, avoids explicit assumptions about recombination and population structure while delivering similar prediction accuracy, better memory usage and an order of magnitude or better run-times compared to the fastest competing method. MendelImpute operates on both dosage data and unphased genotype data and simultaneously imputes missing genotypes and phase at both the typed and untyped SNPs (single nucleotide polymorphisms). Finally, MendelImpute naturally extends to global and local ancestry estimation and lends itself to new strategies for data compression and hence faster data transport and sharing. Availability and implementation Software, documentation and scripts to reproduce our results are available from https://github.com/OpenMendel/MendelImpute.jl. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Wren, Jonathan (Ed.)
    Abstract Motivation In the training of predictive models using high-dimensional genomic data, multiple studies’ worth of data are often combined to increase sample size and improve generalizability. A drawback of this approach is that there may be different sets of features measured in each study due to variations in expression measurement platform or technology. It is often common practice to work only with the intersection of features measured in common across all studies, which results in the blind discarding of potentially useful feature information that is measured in individual or subsets of studies. Results We characterize the loss in predictive performance incurred by using only the intersection of feature information available across all studies when training predictors using gene expression data from microarray and sequencing datasets. We study the properties of linear and polynomial regression for imputing discarded features and demonstrate improvements in the external performance of prediction functions through simulation and in gene expression data collected on breast cancer patients. To improve this process, we propose a pairwise strategy that applies any imputation algorithm to two studies at a time and averages imputed features across pairs. We demonstrate that the pairwise strategy is preferable to first merging all datasets together and imputing any resulting missing features. Finally, we provide insights on which subsets of intersected and study-specific features should be used so that missing-feature imputation best promotes cross-study replicability. Availability and implementation The code is available at https://github.com/YujieWuu/Pairwise_imputation. Supplementary information Supplementary information is available at Bioinformatics online. 
    more » « less
  4. Abstract Protein abundance is controlled at the transcriptional, translational and post-translational levels, and its regulatory principles are starting to emerge. Investigating these principles requires large-scale proteomics data and cannot just be done with transcriptional outcomes that are commonly used as a proxy for protein abundance. Here, we determine proteome changes resulting from the individual knockout of 3308 nonessential genes in the yeast Schizosaccharomyces pombe . We use similarity clustering of global proteome changes to infer gene functionality that can be extended to other species, such as humans or baker’s yeast. Furthermore, we analyze a selected set of deletion mutants by paired transcriptome and proteome measurements and show that upregulation of proteins under stable transcript expression utilizes optimal codons. 
    more » « less
  5. Abstract MotivationComputational methods for compound–protein affinity and contact (CPAC) prediction aim at facilitating rational drug discovery by simultaneous prediction of the strength and the pattern of compound–protein interactions. Although the desired outputs are highly structure-dependent, the lack of protein structures often makes structure-free methods rely on protein sequence inputs alone. The scarcity of compound–protein pairs with affinity and contact labels further limits the accuracy and the generalizability of CPAC models. ResultsTo overcome the aforementioned challenges of structure naivety and labeled-data scarcity, we introduce cross-modality and self-supervised learning, respectively, for structure-aware and task-relevant protein embedding. Specifically, protein data are available in both modalities of 1D amino-acid sequences and predicted 2D contact maps that are separately embedded with recurrent and graph neural networks, respectively, as well as jointly embedded with two cross-modality schemes. Furthermore, both protein modalities are pre-trained under various self-supervised learning strategies, by leveraging massive amount of unlabeled protein data. Our results indicate that individual protein modalities differ in their strengths of predicting affinities or contacts. Proper cross-modality protein embedding combined with self-supervised learning improves model generalizability when predicting both affinities and contacts for unseen proteins. Availability and implementationData and source codes are available at https://github.com/Shen-Lab/CPAC. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less