Regression testing - running available tests after each project change - is widely practiced in industry. Despite its widespread use and importance, regression testing is a costly activity. Regression test selection (RTS) optimizes regression testing by selecting only tests affected by project changes. RTS has been extensively studied and several tools have been deployed in large projects. However, work on RTS over the last decade has mostly focused on languages with abstract computing machines(e.g., JVM). Meanwhile development practices (e.g., frequency of commits, testing frameworks, compilers) in C++ projects have dramatically changed and the way we should design and implement RTS tools and the benefits of those tools is unknown. We present a design and implementation of an RTS technique, dubbed RTS++, that targets projects written in C++, which compile to LLVM IR and use the Google Test testing framework. RTS++ uses static analysis of a function call graph to select tests. RTS++ integrates with many existing build systems, including AutoMake, CMake, and Make. We evaluated RTS++ on 11 large open-source projects, totaling 3,811,916 lines of code. To the best of our knowledge, this is the largest evaluation of an RTS technique for C++. We measured the benefits of RTS++compared to running all available tests (i.e., retest-all). Our results show that RTS++ reduces the number of executed tests and end-to-end testing time by 88% and 61% on average.
more »
« less
An Exploratory Study of Project Activity Changepoints in Open Source Software Evolution
To explore the prevalence of abrupt changes (changepoints) in open source project activity, we assembled a dataset of 8,919 projects from the World of Code. Projects were selected based on age, number of commits, and number of authors. Using the nonparametric PELT algorithm, we identified changepoints in project activity time series, finding that more than 90% of projects had between one and six changepoints. Increases and decreases in project activity occurred with roughly equal frequency. While most changes are relatively small, on the order of a few authors or few dozen commits per month, there were long tails of much larger project activity changes. In future work, we plan to focus on larger changes to search for common open source lifecycle patterns as well as common responses to external events.
more »
« less
- PAR ID:
- 10286202
- Date Published:
- Journal Name:
- 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR)
- Page Range / eLocation ID:
- 624 to 626
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Critical open-source projects form the basis of many large software systems. They provide trusted and extensible implementations of important functionality for cryptography, compatibility, and security. Verifying commit authorship authenticity in open-source projects is essential and challenging. Git users can freely configure author details such as names and email addresses. Platforms like GitHub use such information to generate profile links to user accounts. We demonstrate three attack scenarios malicious actors can use to manipulate projects and profiles on GitHub to appear trustworthy. We designed a mixed-research study to assess the effect on critical open-source software projects and evaluated countermeasures. First, we conducted a large-scale measurement among 50,328 critical open-source projects on GitHub and demonstrated that contribution workflows can be abused in 85.9% of the projects. We identified 573,043 email addresses that a malicious actor can claim to hijack historic contributions and improve the trustworthiness of their accounts. When looking at commit signing as a countermeasure, we found that the majority of users (95.4%) never signed a commit, and for the majority of projects (72.1%), no commit was ever signed. In contrast, only 2.0% of the users signed all their commits, and for 0.2% of the projects all commits were signed. Commit signing is not associated with projects’ programming languages, topics, or other security measures. Second, we analyzed online security advice to explore the awareness of contributor spoofing and identify recommended countermeasures. Most documents exhibit awareness of the simple spoofing technique via Git commits but no awareness of problems with GitHub’s handling of email addresses.more » « less
-
Recent work on open source sustainability shows that successful trajectories of projects in the Apache Software Foundation Incubator (ASFI) can be predicted early on, using a set of socio-technical measures. Because OSS projects are socio-technical systems centered around code artifacts,we hypothesize that sustainable projects may exhibit different code and process patterns than unsustainable ones, and that those patterns can grow more apparent as projects evolve over time. Here we studied the code and coding processes of over 200 ASFI projects, and found that ASFI graduated projects have different patterns of code quality and complexity than retired ones. Likewise for the coding processes – e.g., feature commits or bug-fixing commits are correlated with project graduation success. We find that minor contributors and major contributors (who contribute <5%, respectively >=95% commits) associate with graduation outcomes, implying that having also developers who contribute fewer commits are important for a project’s success. This study provides evidence that OSS projects, especially nascent ones, can benefit from introspection and instrumentation using multidimensional modeling of the whole system, including code, processes, and code quality measures, and how they are interconnected over time.more » « less
-
Open-source projects do not exist in a vacuum. They benefit from reusing other projects and themselves are being reused by others, creating complex networks of interdependencies, i.e., software ecosystems. Therefore, the sustainability of projects comprising ecosystems may no longer by determined solely by factors internal to the project, but rather by the ecosystem context as well. In this paper we report on a mixed-methods study of ecosystem-level factors affecting the sustainability of open-source Python projects. Quantitatively, using historical data from 46,547 projects in the PyPI ecosystem, we modeled the chances of project development entering a period of dormancy (limited activity) as a function of the projects' position in their dependency networks, organizational support, and other factors. Qualitatively, we triangulated the revealed effects and further expanded on our models through interviews with project maintainers. Results show that the number of project ties and the relative position in the dependency network have significant impact on sustained project activity, with nuanced effects early in a project's life cycle and later on.more » « less
-
In order to understand the state and evolution of the entirety of open source software we need to get a handle on the set of distinct software projects. Most of open source projects presently utilize Git, which is a distributed version control system allowing easy creation of clones and resulting in numerous repositories that are almost entirely based on some parent repository from which they were cloned. Git commits are unlikely to get produce and represent a way to group cloned repositories. We use World of Code infrastructure containing approximately 2B commits and 100M repositories to create and share such a map. We discover that the largest group contains almost 14M repositories most of which are unrelated to each other. As it turns out, the developers can push git object to an arbitrary repository or pull objects from unrelated repositories, thus linking unrelated repositories. To address this, we apply Louvain community detection algorithm to this very large graph consisting of links between commits and projects. The approach successfully reduces the size of the megacluster with the largest group of highly interconnected projects containing under 400K repositories. We expect that the resulting map of related projects as well as tools and methods to handle the very large graph will serve as a reference set for mining software projects and other applications. Further work is needed to determine different types of relationships among projects induced by shared commits and other relationships, for example, by shared source code or similar filenames.more » « less
An official website of the United States government

