skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing Interface Aids to Assist Collaborative Robot Operators in Attention Management
As collaborative robots become increasingly widespread in manufacturing settings, there is a greater need for tools and interfaces to support operators who integrate, supervise, and troubleshoot these systems. In this paper, we present an application of the Robot Attention Demand (RAD) metric for use in the design of user interfaces to support operators in collaborative manufacturing scenarios. Building on prior work that introduced RAD, we designed and implemented prototype timeline and countdown-timer interfaces to be used within a collaborative assembly-inspection task where an operator is also responsible for a separate sorting task. We performed a user evaluation to investigate the effects of displaying predictive RAD information on operator performance and perceptions of the task. Our results show lower perceived task load and increased usability scores compared to baseline condition without an interface. These findings suggest that predictive RAD should be used by designers and engineers developing operator interfaces for collaborative robot applications in manufacturing.  more » « less
Award ID(s):
1822872 1426824
PAR ID:
10286325
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Robot and Human Interactive Communication
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teleoperation enables controlling complex robot systems remotely, providing the ability to impart human expertise from a distance. However, these interfaces can be complicated to use as it is difficult to contextualize information about robot motion in the workspace from the limited camera feedback. Thus, it is required to study the best manner in which assistance can be provided to the operator that reduces interface complexity and effort required for teleoperation. Some techniques that provide assistance to the operator while freeform teleoperating include: (1) perception augmentation, like augmented reality visual cues and additional camera angles, increasing the information available to the operator; (2) action augmentation, like assistive autonomy and control augmentation, optimized to reduce the effort required by the operator while teleoperating. In this article, we investigate: (1) which aspects of dexterous telemanipulation require assistance; (2) the impact of perception and action augmentation in improving teleoperation performance; and (3) what factors impact the usage of assistance and how to tailor these interfaces based on the operators’ needs and characteristics. The findings from this user study and resulting post-study surveys will help identify task-based and user-preferred perception and augmentation features for teleoperation assistance. 
    more » « less
  2. Teleoperation enables complex robot platforms to perform tasks beyond the scope of the current state-of-the-art robot autonomy by imparting human intelligence and critical thinking to these operations. For seamless control of robot platforms, it is essential to facilitate optimal situational awareness of the workspace for the operator through active telepresence cameras. However, the control of these active telepresence cameras adds an additional degree of complexity to the task of teleoperation. In this paper we present our results from the user study that investigates: (1) how the teleoperator learns or adapts to performing the tasks via active cameras modeled after camera placements on the TRINA humanoid robot; (2) the perception-action coupling operators implement to control active telepresence cameras, and (3) the camera preferences for performing the tasks. These findings from the human motion analysis and post-study survey will help us determine desired design features for robot teleoperation interfaces and assistive autonomy. 
    more » « less
  3. Collaborative robots promise to transform work across many industries and promote “human-robot teaming” as a novel paradigm. However, realizing this promise requires the understanding of how existing tasks, developed for and performed by humans, can be effectively translated into tasks that robots can singularly or human-robot teams can collaboratively perform. In the interest of developing tools that facilitate this process we present Authr, an end-to-end task authoring environment that assists engineers at manufacturing facilities in translating existing manual tasks into plans applicable for human-robot teams and simulates these plans as they would be performed by the human and robot. We evaluated Authr with two user studies, which demonstrate the usability and effectiveness of Authr as an interface and the benefits of assistive task allocation methods for designing complex tasks for human-robot teams. We discuss the implications of these findings for the design of software tools for authoring human-robot collaborative plans. 
    more » « less
  4. Assistive robot arms can help humans by partially automating their desired tasks. Consider an adult with motor impairments controlling an assistive robot arm to eat dinner. The robot can reduce the number of human inputs — and how precise those inputs need to be — by recognizing what the human wants (e.g., a fork) and assisting for that task (e.g., moving towards the fork). Prior research has largely focused on learning the human’s task and providing meaningful assistance. But as the robot learns and assists, we also need to ensure that the human understands the robot’s intent (e.g., does the human know the robot is reaching for a fork?). In this paper, we study the effects of communicating learned assistance from the robot back to the human operator. We do not focus on the specific interfaces used for communication. Instead, we develop experimental and theoretical models of a) how communication changes the way humans interact with assistive robot arms, and b) how robots can harness these changes to better align with the human’s intent. We first conduct online and in-person user studies where participants operate robots that provide partial assistance, and we measure how the human’s inputs change with and without communication. With communication, we find that humans are more likely to intervene when the robot incorrectly predicts their intent, and more likely to release control when the robot correctly understands their task. We then use these findings to modify an established robot learning algorithm so that the robot can correctly interpret the human’s inputs when communication is present. Our results from a second in-person user study suggest that this combination of communication and learning outperforms assistive systems that isolate either learning or communication. See videos here: https://youtu.be/BET9yuVTVU4 
    more » « less
  5. Disassembly currently is a labor-intensive process with limited automation. The main reason lies in the fact that disassembly usually has to address model variations from different brands, physical uncertainties resulting from component defects or damage during usage, and incomplete product information. To overcome these challenges and to automate the disassembly process through human-robot collaboration, this paper develops a disassembly sequence planner which distributes the disassembly task between human and robot in a human-robot collaborative setting. This sequence planner targets to address potential issues including distinctive products, variant orientations, and safety constraints of human operators. The proposed disassembly sequence planner identifies the locations and orientations of the to-be-disassembled items, determines the starting point, and generates the optimal dis-assembly sequence while complying with the disassembly rules and considering the safe constraints for human operators. This algorithm is validated by numerical and experimental tests: the robot can successfully locate and disassemble the pieces following the obtained optimal sequence, and complete the task via collaboration with the human operator without violating the constraints. 
    more » « less