An important question of quantum information is to characterize genuinely quantum (beyond-Clifford) resources necessary for universal quantum computing. Here, we use the Pauli spectrum to quantify how “magic,” beyond Clifford, typical many-qubit states are. We first present a phenomenological picture of the Pauli spectrum based on quantum typicality, and then we confirm it for Haar random states. We then introduce filtered stabilizer entropy, a magic measure that can resolve the difference between typical and atypical states. We proceed with the numerical study of the Pauli spectrum of states created by random circuits as well as for eigenstates of chaotic Hamiltonians. We find that in both cases, the Pauli spectrum approaches the one of Haar random states, up to exponentially suppressed tails. We discuss how the Pauli spectrum changes when ergodicity is broken due to disorder. Our results underscore the difference between typical and atypical states from the point of view of quantum information
more »
« less
Un-Weyl-ing the Clifford hierarchy
The teleportation model of quantum computation introduced by Gottesman and Chuang (1999) motivated the development of the Clifford hierarchy. Despite its intrinsic value for quantum computing, the widespread use of magic state distillation, which is closely related to this model, emphasizes the importance of comprehending the hierarchy. There is currently a limited understanding of the structure of this hierarchy, apart from the case of diagonal unitaries (Cui et al., 2017; Rengaswamy et al. 2019). We explore the structure of the second and third levels of the hierarchy, the first level being the ubiquitous Pauli group, via the Weyl (i.e., Pauli) expansion of unitaries at these levels. In particular, we characterize the support of the standard Clifford operations on the Pauli group. Since conjugation of a Pauli by a third level unitary produces traceless Hermitian Cliffords, we characterize their Pauli support as well. Semi-Clifford unitaries are known to have ancilla savings in the teleportation model, and we explore their Pauli support via symplectic transvections. Finally, we show that, up to multiplication by a Clifford, every third level unitary commutes with at least one Pauli matrix. This can be used inductively to show that, up to a multiplication by a Clifford, every third level unitary is supported on a maximal commutative subgroup of the Pauli group. Additionally, it can be easily seen that the latter implies the generalized semi-Clifford conjecture, proven by Beigi and Shor (2010). We discuss potential applications in quantum error correction and the design of flag gadgets.
more »
« less
- Award ID(s):
- 1908730
- PAR ID:
- 10286358
- Date Published:
- Journal Name:
- Quantum
- Volume:
- 4
- ISSN:
- 0124-3799
- Page Range / eLocation ID:
- 320
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a new model of quantum computation comprised of low-weight measurement sequences that simultaneously encode logical information, enable error correction, and apply logical gates. These measurement sequences constitute a new class of quantum error-correcting codes generalizing Floquet codes, which we call dynamic automorphism (DA) codes. We construct an explicit example, the DA color code, which is assembled from short measurement sequences that can realize all 72 automorphisms of the 2D color code. On a stack of triangular patches, the DA color code encodes logical qubits and can implement the full logical Clifford group by a sequence of two- and, more rarely, three-qubit Pauli measurements. We also make the first step towards universal quantum computation with DA codes by introducing a 3D DA color code and showing that a non-Clifford logical gate can be realized by adaptive two-qubit measurements.more » « less
-
Abstract This paper is concerned with the phase estimation algorithm in quantum computing, especially the scenarios where (1) the input vector is not an eigenvector; (2) the unitary operator is approximated by Trotter or Taylor expansion methods; (3) random approximations are used for the unitary operator. We characterize the probability of computing the phase values in terms of the consistency error, including the residual error, Trotter splitting error, or statistical mean-square error. In the first two cases, we show that in order to obtain the phase value with error less or equal to 2 − n and probability at least 1 − ϵ , the required number of qubits is t ⩾ n + log 2 + δ 2 2 ϵ Δ E 2 . The parameter δ quantifies the error associated with the inexact eigenvector and/or the unitary operator, and Δ E characterizes the spectral gap, i.e., the separation from the rest of the phase values. This analysis generalizes the standard result (Cleve et al 1998 Phys. Rev X 11 011020; Nielsen and Chuang 2002 Quantum Computation and Quantum Information ) by including these effects. More importantly, it shows that when δ < Δ E , the complexity remains the same. For the third case, we found a similar estimate, but the number of random steps has to be sufficiently large.more » « less
-
By leveraging shared entanglement between a pair of qubits, one can teleport a quantum state from one particle to another. Recent advances have uncovered an intrinsically many-body generalization of quantum teleportation, with an elegant and surprising connection to gravity. In particular, the teleportation of quantum information relies on many-body dynamics, which originate from strongly-interacting systems that are holographically dual to gravity; from the gravitational perspective, such quantum teleportation can be understood as the transmission of information through a traversable wormhole. Here, we propose and analyze a new mechanism for many-body quantum teleportation -- dubbed peaked-size teleportation. Intriguingly, peaked-size teleportation utilizes precisely the same type of quantum circuit as traversable wormhole teleportation, yet has a completely distinct microscopic origin: it relies upon the spreading of local operators under generic thermalizing dynamics and not gravitational physics. We demonstrate the ubiquity of peaked-size teleportation, both analytically and numerically, across a diverse landscape of physical systems, including random unitary circuits, the Sachdev-Ye-Kitaev model (at high temperatures), one-dimensional spin chains and a bulk theory of gravity with stringy corrections. Our results pave the way towards using many-body quantum teleportation as a powerful experimental tool for: (i) characterizing the size distributions of operators in strongly-correlated systems and (ii) distinguishing between generic and intrinsically gravitational scrambling dynamics. To this end, we provide a detailed experimental blueprint for realizing many-body quantum teleportation in both trapped ions and Rydberg atom arrays; effects of decoherence and experimental imperfections are analyzed.more » « less
-
Abstract Recently, several quantum benchmarking algorithms have been developed to characterize noisy quantum gates on today’s quantum devices. A fundamental issue in benchmarking is that not everything about quantum noise is learnable due to the existence of gauge freedom, leaving open the question what information is learnable and what is not, which is unclear even for a single CNOT gate. Here we give a precise characterization of the learnability of Pauli noise channels attached to Clifford gates using graph theoretical tools. Our results reveal the optimality of cycle benchmarking in the sense that it can extract all learnable information about Pauli noise. We experimentally demonstrate noise characterization of IBM’s CNOT gate up to 2 unlearnable degrees of freedom, for which we obtain bounds using physical constraints. In addition, we show that an attempt to extract unlearnable information by ignoring state preparation noise yields unphysical estimates, which is used to lower bound the state preparation noise.more » « less
An official website of the United States government

