This content will become publicly available on August 27, 2025
We propose a new model of quantum computation comprised of low-weight measurement sequences that simultaneously encode logical information, enable error correction, and apply logical gates. These measurement sequences constitute a new class of quantum error-correcting codes generalizing Floquet codes, which we call dynamic automorphism (DA) codes. We construct an explicit example, the DA color code, which is assembled from short measurement sequences that can realize all 72 automorphisms of the 2D color code. On a stack oftriangular patches, the DA color code encodeslogical qubits and can implement the full logical Clifford group by a sequence of two- and, more rarely, three-qubit Pauli measurements. We also make the first step towards universal quantum computation with DA codes by introducing a 3D DA color code and showing that a non-Clifford logical gate can be realized by adaptive two-qubit measurements.
more » « less- Award ID(s):
- 1818914
- PAR ID:
- 10552033
- Publisher / Repository:
- https://quantum-journal.org/
- Date Published:
- Journal Name:
- Quantum
- Volume:
- 8
- ISSN:
- 2521-327X
- Page Range / eLocation ID:
- 1448
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Quantum error-correcting codes can be used to protect qubits involved in quantum computation. This requires that logical operators acting on protected qubits be translated to physical operators (circuits) acting on physical quantum states. We propose a mathematical framework for synthesizing physical circuits that implement logical Clifford operators for stabilizer codes. Circuit synthesis is enabled by representing the desired physical Clifford operator in CN ×N as a 2m × 2m binary sym- plectic matrix, where N = 2m. We show that for an [m, m − k] stabilizer code every logical Clifford operator has 2k(k+1)/2 symplectic solutions, and we enumerate them efficiently using symplectic transvections. The desired circuits are then obtained by writing each of the solutions as a product of elementary symplectic matrices. For a given operator, our assembly of all of its physical realizations enables optimization over them with respect to a suitable metric. Our method of circuit synthesis can be applied to any stabilizer code, and this paper provides a proof of concept synthesis of universal Clifford gates for the well- known [6, 4, 2] code. Programs implementing our algorithms can be found at https://github.com/nrenga/symplectic-arxiv18a.more » « less
-
Tailored topological stabilizer codes in two dimensions have been shown to exhibit high-storage-threshold error rates and improved subthreshold performance under biased Pauli noise. Three-dimensional (3D) topological codes can allow for several advantages including a transversal implementation of non-Clifford logical gates, single-shot decoding strategies, and parallelized decoding in the case of fracton codes, as well as construction of fractal-lattice codes. Motivated by this, we tailor 3D topological codes for enhanced storage performance under biased Pauli noise. We present Clifford deformations of various 3D topological codes, such that they exhibit a threshold error rate of 50% under infinitely biased Pauli noise. Our examples include the 3D surface code on the cubic lattice, the 3D surface code on a checkerboard lattice that lends itself to a subsystem code with a single-shot decoder, and the 3D color code, as well as fracton models such as the X-cube model, the Sierpiński model, and the Haah code. We use the belief propagation with ordered statistics decoder (BP OSD) to study threshold error rates at finite bias. We also present a rotated layout for the 3D surface code, which uses roughly half the number of physical qubits for the same code distance under appropriate boundary conditions. Imposing coprime periodic dimensions on this rotated layout leads to logical operators of weight O(n) at infinite bias and a corresponding exp[−O(n)] subthreshold scaling of the logical failure rate, where n is the number of physical qubits in the code. Even though this scaling is unstable due to the existence of logical representations with O(1) low-rate and O(n2/3) high-rate Pauli errors, the number of such representations scales only polynomially for the Clifford-deformed code, leading to an enhanced effective distance.more » « less
-
Recent constructions of quantum low-density parity-check (QLDPC) codes provide optimal scaling of the number of logical qubits and the minimum distance in terms of the code length, thereby opening the door to fault-tolerant quantum systems with minimal resource overhead. However, the hardware path from nearest-neighbor-connection-based topological codes to long-range-interaction-demanding QLDPC codes is likely a challenging one. Given the practical difficulty in building a monolithic architecture for quantum systems, such as computers, based on optimal QLDPC codes, it is worth considering a distributed implementation of such codes over a network of interconnected medium-sized quantum processors. In such a setting, all syndrome measurements and logical operations must be performed through the use of high-fidelity shared entangled states between the processing nodes. Since probabilistic many-to-1 distillation schemes for purifying entanglement are inefficient, we investigate quantum error correction based entanglement purification in this work. Specifically, we employ QLDPC codes to distill GHZ states, as the resulting high-fidelity logical GHZ states can interact directly with the code used to perform distributed quantum computing (DQC), e.g. for fault-tolerant Steane syndrome extraction. This protocol is applicable beyond the application of DQC since entanglement distribution and purification is a quintessential task of any quantum network. We use the min-sum algorithm (MSA) based iterative decoder with a sequential schedule for distilling-qubit GHZ states using a ratefamily of lifted product QLDPC codes and obtain an input fidelity threshold ofunder i.i.d. single-qubit depolarizing noise. This represents the best threshold for a yield offor any GHZ purification protocol. Our results apply to larger size GHZ states as well, where we extend our technical result about a measurement property of-qubit GHZ states to construct a scalable GHZ purification protocol.
-
Utilizing the framework of
lattice gauge theories in the context of Pauli stabilizer codes, we present methodologies for simulating fermions via qubit systems on a two-dimensional square lattice. We investigate the symplectic automorphisms of the Pauli module over the Laurent polynomial ring. This enables us to systematically increase the code distances of stabilizer codes while fixing the rate between encoded logical fermions and physical qubits. We identify a family of stabilizer codes suitable for fermion simulation, achieving code distances of d=2,3,4,5,6,7, allowing correction of any\mathbb{Z}_2 -qubit error. In contrast to the traditional code concatenation approach, our method can increase the code distances without decreasing the (fermionic) code rate. In particular, we explicitly show all stabilizers and logical operators for codes with code distances of d=3,4,5. We provide syndromes for all Pauli errors and invent a syndrome-matching algorithm to compute code distances numerically.\lfloor \frac{d-1}{2} \rfloor -
Recent advancements in multi-mode Gottesman-Kitaev-Preskill (GKP) codes have shown great promise in enhancing the protection of both discrete and analog quantum information. This broadened range of protection brings opportunities beyond quantum computing to benefit quantum sensing by safeguarding squeezing — the essential resource in many quantum metrology protocols. However, the potential for quantum sensing to benefit quantum error correction has been less explored. In this work, we provide a unique example where techniques from quantum sensing can be applied to improve multi-mode GKP codes. Inspired by distributed quantum sensing, we propose the distributed two-mode squeezing (dtms) GKP codes that offer benefits in error correction with minimal active encoding operations. Indeed, the proposed codes rely on a(active) two-mode squeezing element and an array of beamsplitters that effectively distributes continuous-variable correlations to many GKP ancillae, similar to continuous-variable distributed quantum sensing. Despite this simple construction, the code distance achievable with dtms-GKP qubit codes is comparable to previous results obtained through brute-force numerical search \cite{lin2023closest}. Moreover, these codes enable analog noise suppression beyond that of the best-known two-mode codes \cite{noh2020o2o} without requiring an additional squeezer. We also provide a simple two-stage decoder for the proposed codes, which appears near-optimal for the case of two modes and permits analytical evaluation.