skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Along-strike variations in protothrust zone characteristics at the Nankai Trough subduction margin
Abstract Significant along-strike changes in the protothrust zone at the toe of the Nankai Trough accretionary prism were imaged in new high-resolution seismic reflection data. The width of the protothrust zone varies greatly along strike; two spatially discrete segments have a wide protothrust zone (∼3.3–7.8 km, ∼50–110 protothrusts), and two segments have almost no protothrust zone (∼0.5–2.8 km, <20 protothrusts). The widest protothrust zone occurs in the region with the widest and thickest sediment wedge and subducting turbidite package, both of which are influenced by basement topography. The trench wedge size and lithology, the lithology of the subducting section, and the basement topography all influence the rate of consolidation in the trench wedge, which we hypothesize is an important control over the presence and width of the protothrust zone. We conclude that protothrusts are fractures that form from shear surfaces in deformation band clusters as the trench fill sediment is consolidated. Strain localization occurs at sites with a high density of protothrusts, which become the probable locations of future frontal thrust propagation. The frontal thrust may propagate forward with a lower buildup of strain where it is adjacent to a wide protothrust zone than at areas with a narrow or no protothrust zone. This is reflected in the accretionary prism geometry, where wide protothrust zones occur adjacent to fault-propagation folds with shallow prism toe surface slopes.  more » « less
Award ID(s):
1658580
PAR ID:
10286404
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Geosphere
Volume:
17
Issue:
2
ISSN:
1553-040X
Page Range / eLocation ID:
389 to 408
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study stress, pressure, and rock properties in evolving accretionary wedges using analytical formulations and geomechanical models. The evolution of the stress state from that imposed by uniaxial burial seaward of the trench to Coulomb failure within the wedge generates overpressure and drives compaction above the décollement. Changes in both mean and shear stress generate overpressure and shear‐induced pressures play a particularly important role in the trench area. In the transition zone between uniaxial burial and Coulomb failure, shear‐induced overpressures increase more than overburden and are higher than footwall pressures. This rapid increase in overpressure reduces the effective normal stress and weakens the plate interface along a zone that onsets ahead of the trench and persists well into the subduction zone. It also drives dewatering at the trench, which enables compaction of the hanging‐wall sediments and a porosity offset at the décollement. Within the accretionary wedge, sediments are at Coulomb failure and the pore pressure response is proportional to changes in mean stress. Low permeability and high convergence rates promote overpressure generation in the wedge, which limits sediment strength. Our results may provide a hydromechanical explanation for a wide range of observed behaviors, including the development of protothrust zones, widespread occurrence of shallow slow earthquake phenomena, and the propagation of large shallow coseismic slip. 
    more » « less
  2. The Hikurangi margin of New Zealand exhibits contrasting slip behavior from south to north. Whereas the southern Hikurangi margin has a locked plate boundary that can potentially produce large megathrust earthquakes, the northern section of this margin accommodates plate motion by creep and recurring shallow slow-slip events. To investigate these different modes of slip we use marine seismic reflection data to image the reflectivity and seismic velocity structure along profiles across the accretionary wedge. Seismic veloc¬ity images up to 12 km deep and prestack depth migrations together charac¬terize the nature of incoming basement, sediment subduction and accretion, and faulting and compaction of the accretionary wedge. Our seismic velocity models show that a layer of sediment,with seismic wavespeeds of ~3.5 km/s, is entrained beneath the accretionary prism in the southern Hikurangi margin, but there is no coherent subducted sediment layer to the north. This is a significant result, because it implies that the sedi¬ment layer covers basement roughness and forms a smoother plate boundary in the south. In addition, the deepest sediments on the incoming plate in the southern Hikurangi margin are believed to be quartz-rich turbidites, which are prone to unstable slip along the plate boundary. In contrast, the accre¬tionary prism of the northern Hikurangi margin exhibits more variation in accretionary wedge thrust geometry due to interactions with large seamounts on the downgoing oceanic basement. These findings are consistent with the geodetically locked nature of a smooth, quartz-rich plate boundary along the southern Hikurangi subduction zone, and the creeping nature of a heteroge¬neous plate boundary along the Hikurangi margin to the north. 
    more » « less
  3. The Hikurangi margin of New Zealand exhibits contrasting slip behavior from south to north. Whereas the southern Hikurangi margin has a locked plate boundary that can potentially produce large megathrust earthquakes, the northern section of this margin accommodates plate motion by creep and episodic shallow slow-slip events. To investigate these different modes of slip we examine the geometry of the plate boundary and consolidation state of the materials along the plate interface. We use marine seismic reflection data from the SHIRE project to image the reflectivity and seismic velocity structure along 20 profiles across the accretionary wedge of the Hikurangi subduction zone of New Zealand. These active-source seismic data were gathered in 2017 with the R/V Marcus Langseth using a 6,600 in3 seismic source and 12 km long receiver array. We carried out streamer tomography on the SHIRE profiles where we integrated seismic velocity constraints from stacking the reflection data along all SHIRE transects. The seismic velocity images and prestack depth migrations together characterize the nature of incoming basement, sediment subduction and accretion, and faulting and compaction of the accretionary wedge. Our seismic velocity models show that a layer of sediment,with seismic wavespeeds of ~3.0 km/s, is entrained beneath the accretionary prism in the southern Hikurangi margin, but there is no coherent subducted sediment layer to the north. This is a significant result, because it implies that the sediment layer covers basement roughness and forms a smoother plate boundary in the south. In addition, the deepest sediments on the incoming plate in the southern Hikurangi margin are believed to be quartz-rich turbidites, which are prone to unstable slip along the plate boundary. In contrast, the accretionary prism of the northern Hikurangi margin exhibits more variation in accretionary wedge thrust geometry due to interactions with large seamounts on the downgoing oceanic basement. These findings are consistent with the geodetically locked nature of a smooth, quartz-rich plate boundary along the southern Hikurangi subduction zone, and the creeping nature of a heterogeneous plate boundary along the Hikurangi margin to the north. 
    more » « less
  4. null (Ed.)
    Determining factors that limit the biomass, diversity, and activity of subseafloor microbial communities is one of the major scientific goals to be addressed by scientific ocean drilling. In the International Ocean Discovery Program (IODP) T-Limit Project, we will drill and core at new boreholes in the immediate vicinity of Ocean Drilling Program (ODP) Sites 1173, 1174, and 808 off Cape Muroto, Japan, in the central Nankai Trough, where anomalously high heat flow regimes result in temperatures of 110° to 140°C at the sediment/basement interface. Because of their location in the trench (Site 1173) and landward protothrust zone of the Nankai Trough accretionary prism (Sites 808 and 1174), the sites have different geotectonic and thermal histories that have resulted in contrasting (bio)geochemical modes of hydrocarbon gas production and consumption. Although the upper temperature limit appears well constrained at relatively energy-rich hydrothermal vent systems at just above 120°C, it is unknown in energy-starved sedimentary subseafloor settings but is generally presumed to be lower and thus expected to be covered by our target sites. During the IODP T-Limit Project, we aim to • Comprehensively study the factors that control biomass, activity, and diversity of microbial communities in a subseafloor environment where temperatures increase from ~30° to ~130°C and thus likely encompasses the biotic–abiotic transition zone; and • Determine geochemical, geophysical, and hydrogeological characteristics in sediment and the underlying basaltic basement and elucidate if the supply of fluids containing thermogenic and/or geogenic nutrient and energy substrates may support subseafloor microbial communities in the Nankai accretionary complex. Because of the D/V Chikyu’s schedule, these scientific objectives cannot be achieved within a single expedition. During the first T-Limit expedition (370), we will drill and retrieve core samples from sedimentary sections (200–1210 m below seafloor) and basement basalt (1210–1260 m below seafloor) at the protothrust site near ODP Site 1174 and measure temperatures in situ. 
    more » « less
  5. Abstract The southern Hikurangi subduction zone exhibits significant along‐strike variation in convergence rate and obliquity, sediment thickness and, uniquely, the increasing proximity of southern Hikurangi to, and impingement on, the incoming continental Chatham Rise, an ancient Gondwana accretionary complex. There are corresponding changes in the morphology and structure of the Hikurangi accretionary prism. We combine widely spaced multichannel seismic reflection profiles with high resolution bathymetry and previous interpretations to characterize the structure and the history of the accretionary prism since 2 Ma. The southern Hikurangi margin can be divided into three segments. A northeastern segment (A) characterized by a moderately wide (∼70 km), low taper (∼5°) prism recording uninhibited outward growth in the last ∼1 Myr. Deformation resolvable in seismic reflection data accounts for ∼20 % of plate convergence, comparable with the central Hikurangi margin further North. A central segment (B) characterized by a narrow (∼30 km), moderate taper (∼8°) prism, with earlier (∼2‐∼1 Ma) shortening than segment A. Outward prism growth ceased coincidentally with development of major strike‐slip faults in the prism interior, reduced margin‐normal convergence rate, and the onset of impingement on the incoming Chatham Rise to the south. A southwestern segment (C) marks the approximate southern termination of subduction but widens to ∼50 km due to rapid outward migration of the deformation front via fault reactivation within the now‐underthrusting corner of the Chatham Rise. Segment C exhibits minimal shortening as margin‐normal subduction velocity decreases and plate motion is increasingly taken up by interior thrusts and strike‐slip faults. 
    more » « less