We investigated the neural representation of locomotion in the nematode C. elegans by recording population calcium activity during movement. We report that population activity more accurately decodes locomotion than any single neuron. Relevant signals are distributed across neurons with diverse tunings to locomotion. Two largely distinct subpopulations are informative for decoding velocity and curvature, and different neurons’ activities contribute features relevant for different aspects of a behavior or different instances of a behavioral motif. To validate our measurements, we labeled neurons AVAL and AVAR and found that their activity exhibited expected transients during backward locomotion. Finally, we compared population activity during movement and immobilization. Immobilization alters the correlation structure of neural activity and its dynamics. Some neurons positively correlated with AVA during movement become negatively correlated during immobilization and vice versa. This work provides needed experimental measurements that inform and constrain ongoing efforts to understand population dynamics underlying locomotion in C. elegans .
more »
« less
Persistent thermal input controls steering behavior in Caenorhabditis elegans
Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering behavior remain elusive. Here, we analyze a C . elegans thermotactic behavior in which a small number of neurons are shown to mediate steering toward a destination temperature. We construct a neuroanatomical model and use an evolutionary algorithm to find configurations of the model that reproduce empirical thermotactic behavior. We find that, in all the evolved models, steering curvature are modulated by temporally persistent thermal signals sensed beyond the time scale of sinusoidal locomotion of C . elegans . Persistent rise in temperature decreases steering curvature resulting in straight movement of model worms, whereas fall in temperature increases curvature resulting in crooked movement. This relation between temperature change and steering curvature reproduces the empirical thermotactic migration up thermal gradients and steering bias toward higher temperature. Further, spectrum decomposition of neural activities in model worms show that thermal signals are transmitted from a sensory neuron to motor neurons on the longer time scale than sinusoidal locomotion of C . elegans . Our results suggest that employments of temporally persistent sensory signals enable small animals to steer toward a destination in natural environment with variable, noisy, and subtle cues.
more »
« less
- Award ID(s):
- 1845322
- PAR ID:
- 10286538
- Editor(s):
- Ahamed, Tosif
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1007916
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inhibitory feedback from the motor circuit gates mechanosensory processing in Caenorhabditis elegansSengupta, Piali (Ed.)Animals must integrate sensory cues with their current behavioral context to generate a suitable response. How this integration occurs is poorly understood. Previously, we developed high-throughput methods to probe neural activity in populations ofCaenorhabditis elegansand discovered that the animal’s mechanosensory processing is rapidly modulated by the animal’s locomotion. Specifically, we found that when the worm turns it suppresses its mechanosensory-evoked reversal response. Here, we report thatC.elegansuse inhibitory feedback from turning-associated neurons to provide this rapid modulation of mechanosensory processing. By performing high-throughput optogenetic perturbations triggered on behavior, we show that turning-associated neurons SAA, RIV, and/or SMB suppress mechanosensory-evoked reversals during turns. We find that activation of the gentle-touch mechanosensory neurons or of any of the interneurons AIZ, RIM, AIB, and AVE during a turn is less likely to evoke a reversal than activation during forward movement. Inhibiting neurons SAA, RIV, and SMB during a turn restores the likelihood with which mechanosensory activation evokes reversals. Separately, activation of premotor interneuron AVA evokes reversals regardless of whether the animal is turning or moving forward. We therefore propose that inhibitory signals from SAA, RIV, and/or SMB gate mechanosensory signals upstream of neuron AVA. We conclude thatC.elegansrely on inhibitory feedback from the motor circuit to modulate its response to sensory stimuli on fast timescales. This need for motor signals in sensory processing may explain the ubiquity in many organisms of motor-related neural activity patterns seen across the brain, including in sensory processing areas.more » « less
-
The surrounding thermal environment is highly important for the survival and fitness of animals, and as a result most exhibit behavioral and neural responses to temperature changes. We study signals generated by thermosensory neurons inDrosophilalarvae and also the physical and sensory effects of temperature variation on locomotion and navigation. In particular we characterize how sensory neuronal and behavioral responses to temperature variation both change across the development of the larva. Looking at a wide range of non-nociceptive isotropic thermal environments, we characterize the dependence of speed, turning rate, and other behavioral components on temperature, distinguishing the physical effects of temperature from behavior changes based on sensory processing. We also characterize the strategies larvae use to modulate individual behavioral components to produce directed navigation along thermal gradients, and how these strategies change during physical development. Simulations based on modified random walks show where thermotaxis in each developmental stage fits into the larger context of possible navigation strategies. We also investigate cool sensing neurons in the larva's dorsal organ ganglion, characterizing neural response to sine-wave modulation of temperature while performing single-cell-resolution 3D imaging. We determine the sensitivity of these neurons, which produce signals in response to extremely small temperature changes. Combining thermotaxis results with neurophysiology data, we observe, across development, sensitivity to temperature change as low as a few thousandths of a °C per second, or a few hundredths of a °C in absolute temperature change.more » « less
-
A worm called Caenorhabditis elegans has a nervous system made up of only 302 neurons, far fewer than the billions of cells that comprise our own brains. And yet these few hundred neurons are enough for these worms to detect and respond to their surroundings. C. elegans is thus a popular choice for studying how nervous systems process sensory information and use it to control behavior. Yet, most experiments to date have used only simple stimuli, such as taps or pokes, and studied a handful of behaviors, such as whether or not a worm stops moving or backs up. This limits the conclusions it has been possible to draw. Liu et al. therefore set out to determine how the worm’s nervous system responds to more complex stimuli. These included physical stimuli, such as taps on the side of the dish containing the worms, as well as simulated stimuli. To generate the latter, Liu et al. used a technique called optogenetics to directly activate the neurons in the worm’s body that would normally detect information from the senses, by simply shining a light on the worms. Doing so gives the worm the sensation of a physical stimulus, even though none was present. Liu et al. then used mathematics to examine the relationships between the stimuli and the worms’ responses. The results confirmed that worms usually respond to simple stimuli, such as taps on the side of their dish, by backing up. But they also revealed more advanced forms of stimulus processing. The worms responded differently to stimuli that increased over time versus decreased, for example. A worm's response to a stimulus also varied depending on what the worm was doing at the time. Worms that were in the middle of turns, for instance, ignored stimuli to which they would normally respond. This suggests that an animal’s current behavior influences how its nervous system interprets sensory information. The discovery of relatively sophisticated responses to sensory stimuli in C. elegans indicates that even simple nervous systems are capable of flexible sensory processing. This lays a foundation for understanding how neural circuits interpret sensory signals. Building on this work will ultimately help us understand how more complicated nervous systems interpret and respond to the world.more » « less
-
The Earth’s environment is full of reactive chemicals that can cause harm to organisms. One of the most common is hydrogen peroxide, which is produced by several bacteria in concentrations high enough to kill small animals, such as the roundworm Caenorhabditis elegans . Forced to live in close proximity to such perils, C. elegans have evolved defenses to ensure their survival, such as producing enzymes that can break down hydrogen peroxide. However, this battle is compounded by other factors. For instance, rising temperatures can increase the rate at which the hydrogen peroxide produced by bacteria reacts with the molecules and proteins of C. elegans . In 2020, a group of researchers found that roundworms sense these temperature changes through special cells called sensory neurons and use this information to control the generation of enzymes that break down hydrogen peroxide. This suggests that C. elegans may pre-emptively prepare their defenses against hydrogen peroxide in response to higher temperatures so they are better equipped to shield themselves from this harmful chemical. To test this theory, Servello et al. – including some of the authors involved in the 2020 study – exposed C. elegans to a species of bacteria that produces hydrogen peroxide. This revealed that the roundworms were better at dealing with the threat of hydrogen peroxide when growing in warmer temperatures. Experiments done in C. elegans lacking a class of sensory cells, the AFD neurons, showed that these neurons increased the roundworms’ resistance to the chemical when temperatures increase. They do this by repressing the activity of INS-39, a hormone that stops C. elegans from switching on their defense mechanism against peroxides. This is the first example of a multicellular organism preparing its defenses to a chemical after sensing something (such as temperature) that enhances its reactivity. It is possible that other animals may also use this ‘enhancer sensing' strategy to anticipate and shield themselves from hydrogen peroxide and potentially other external threats.more » « less
An official website of the United States government

