We investigated the neural representation of locomotion in the nematode C. elegans by recording population calcium activity during movement. We report that population activity more accurately decodes locomotion than any single neuron. Relevant signals are distributed across neurons with diverse tunings to locomotion. Two largely distinct subpopulations are informative for decoding velocity and curvature, and different neurons’ activities contribute features relevant for different aspects of a behavior or different instances of a behavioral motif. To validate our measurements, we labeled neurons AVAL and AVAR and found that their activity exhibited expected transients during backward locomotion. Finally, we compared population activity during movement and immobilization. Immobilization alters the correlation structure of neural activity and its dynamics. Some neurons positively correlated with AVA during movement become negatively correlated during immobilization and vice versa. This work provides needed experimental measurements that inform and constrain ongoing efforts to understand population dynamics underlying locomotion in C. elegans .
Persistent thermal input controls steering behavior in Caenorhabditis elegans
Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering behavior remain elusive. Here, we analyze a C . elegans thermotactic behavior in which a small number of neurons are shown to mediate steering toward a destination temperature. We construct a neuroanatomical model and use an evolutionary algorithm to find configurations of the model that reproduce empirical thermotactic behavior. We find that, in all the evolved models, steering curvature are modulated by temporally persistent thermal signals sensed beyond the time scale of sinusoidal locomotion of C . elegans . Persistent rise in temperature decreases steering curvature resulting in straight movement of model worms, whereas fall in temperature increases curvature resulting in crooked movement. This relation between temperature change and steering curvature reproduces the empirical thermotactic migration up thermal gradients and steering bias toward higher temperature. Further, spectrum decomposition of neural activities in model worms show that thermal signals are transmitted from a sensory neuron to motor neurons on the longer time scale than sinusoidal locomotion of C . elegans . Our results more »
- Editors:
- Ahamed, Tosif
- Award ID(s):
- 1845322
- Publication Date:
- NSF-PAR ID:
- 10286538
- Journal Name:
- PLOS Computational Biology
- Volume:
- 17
- Issue:
- 1
- Page Range or eLocation-ID:
- e1007916
- ISSN:
- 1553-7358
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A worm called Caenorhabditis elegans has a nervous system made up of only 302 neurons, far fewer than the billions of cells that comprise our own brains. And yet these few hundred neurons are enough for these worms to detect and respond to their surroundings. C. elegans is thus a popular choice for studying how nervous systems process sensory information and use it to control behavior. Yet, most experiments to date have used only simple stimuli, such as taps or pokes, and studied a handful of behaviors, such as whether or not a worm stops moving or backs up. This limits the conclusions it has been possible to draw. Liu et al. therefore set out to determine how the worm’s nervous system responds to more complex stimuli. These included physical stimuli, such as taps on the side of the dish containing the worms, as well as simulated stimuli. To generate the latter, Liu et al. used a technique called optogenetics to directly activate the neurons in the worm’s body that would normally detect information from the senses, by simply shining a light on the worms. Doing so gives the worm the sensation of a physical stimulus, even though none wasmore »
-
Animals generate many different motor programs (such as moving, feeding and grooming) that they can alter in response to internal needs and environmental cues. These motor programs are controlled by dedicated brain circuits that act on specific muscle groups. However, little is known about how organisms coordinate these different motor programs to ensure that their resulting behavior is coherent and appropriate to the situation. This is difficult to investigate in large organisms with complex nervous systems, but with 302 brain cells that control 143 muscle cells, the small worm Caenorhabditis elegans provides a good system to examine this question. Here, Cermak, Yu, Clark et al. devised imaging methods to record each type of motor program in C. elegans worms over long time periods, while also dissecting the underlying neural mechanisms that coordinate these motor programs. This constitutes one of the first efforts to capture and quantify all the behavioral outputs of an entire organism at once. The experiments also showed that dopamine – a messenger molecule in the brain – links the neural circuits that control two motor programs: movement and egg-laying. A specific type of high-speed movement activates brain cells that release dopamine, which then transmits this information tomore »
-
Gilestro, Giorgio F (Ed.)Automated analysis of video can now generate extensive time series of pose and motion in freely-moving organisms. This requires new quantitative tools to characterise behavioural dynamics. For the model roundworm Caenorhabditis elegans , body pose can be accurately quantified from video as coordinates in a single low-dimensional space. We focus on this well-established case as an illustrative example and propose a method to reveal subtle variations in behaviour at high time resolution. Our data-driven method, based on empirical dynamic modeling, quantifies behavioural change as prediction error with respect to a time-delay-embedded ‘attractor’ of behavioural dynamics. Because this attractor is constructed from a user-specified reference data set, the approach can be tailored to specific behaviours of interest at the individual or group level. We validate the approach by detecting small changes in the movement dynamics of C. elegans at the initiation and completion of delta turns. We then examine an escape response initiated by an aversive stimulus and find that the method can track return to baseline behaviour in individual worms and reveal variations in the escape response between worms. We suggest that this general approach—defining dynamic behaviours using reference attractors and quantifying dynamic changes using prediction error—may be of broadmore »
-
Synopsis Locomotion is a hallmark of organisms which has enabled adaptive radiation to an extraordinarily diverse class of ecological niches, and allows animals to move across vast distances. Sampling from multiple sensory modalities enables animals to acquire rich information to guide locomotion. Locomotion without sensory feedback is haphazard; therefore, sensory and motor systems have evolved complex interactions to generate adaptive behavior. Notably, sensory-guided locomotion acts over broad spatial and temporal scales to permit goal-seeking behavior, whether to localize food by tracking an attractive odor plume or to search for a potential mate. How does the brain integrate multimodal stimuli over different temporal and spatial scales to effectively control behavior? In this review, we classify locomotion into three ordinally ranked hierarchical layers that act over distinct spatiotemporal scales: stabilization, motor primitives, and higher-order tasks, respectively. We discuss how these layers present unique challenges and opportunities for sensorimotor integration. We focus on recent advances in invertebrate locomotion due to their accessible neural and mechanical signals from the whole brain, limbs, and sensors. Throughout, we emphasize neural-level description of computations for multimodal integration in genetic model systems, including the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. We identify thatmore »