skip to main content


Title: Chemical Reduction of Ni II Cyclam and Characterization of Isolated Ni I Cyclam with Cryogenic Vibrational Spectroscopy and Inert-Gas-Mediated High-Resolution Mass Spectrometry
Award ID(s):
1828190
NSF-PAR ID:
10286554
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
125
Issue:
31
ISSN:
1089-5639
Page Range / eLocation ID:
6715 to 6721
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herein we report the results of preparing metal compounds (where the metal ions are Co2+, Ni2+, Cu2+, Zn2+) with the cyclic ligand 1,4,8,11-tetraazacyclotetradecane [cyclam] under a variety of conditions of metal-ligand ratios and solvent media. In all cases, we used metal Cl2 . nH2O salts (except for anhydrous CoCl2), as specified. Outcome: we isolated species with a four-coordinate metal in the N4 cavity of the ligand alone, and also with either one or two additional axial ligands. Those axial ligands can be (a) a single chloride, leading to penta-coordinated+ products; (b) two chlorides, leading to octahedral-neutral compounds; (c) two waters, giving rise to hexa-coordinated [(cyclam)metal(H2O)2]2+ species. Finally, in the case of HCl added to the reaction medium, the cyclam can be di-protonated and appears as [(cyclam)H2]2+ in the crystals. With such a variety of products, it is not surprising that since the metal coordination numbers vary, the cyclam ligand stereochemistries are thereby affected. Interestingly, the [(cyclam)metal] species are invariably hydrogen-bonded to one another in infinite strings of two kinds: (1) those for which the crystal’s Z’ = 1 have single strings; (2) when Z’ = 2, there is a pair of homogeneous strings attached to one another by a variety of hydrogen-bonding linkages. Finally, we observed an interesting pair of hydroxonium cations: the first is hydoxonium cations in a pleated 2-D sheet consisting of fused pentagons located between sheets of [(cyclam)metal] moieties; the second one is an infinite string of composition (H3O+)-(H2O)-(H3O+)-(H2O)-(H3O+)-(H2O)-(H3O+). 
    more » « less
  2. Over recent years, great efforts have been made to push the limits of layered transition metal oxides for secondary battery cathodes. This is particularly true for overall capacity, which has reached a terminal theoretical value for many materials. One avenue for increasing this capacity during charging is the intercalation of anions post cation deintercalation. This work investigates the charging mechanism of the P3-Na0.5Ni0.25 Mn0.75O2 cathode material through cation (Na) deintercalation and anion (ClO4) intercalation by means of density functional theory. The calculations corroborate experimental findings of increased capacity (135 mAh g-1 to 180 mAh g-1) through the intercalation of anions. However, this work demonstrates that a process of simultaneous cation deintercalation/anion intercalation is the primary charging mechanism, with charge compensation reactions of Ni2+/Ni4+ and O2-/O- occurring within the cathode material. To elucidate this simultaneous process, a novel method for computationally determining anion voltage in which one must consider full electrolyte interactions is proposed. Based on the results, it is believed that a simultaneous cation deintercalation/anion intercalation mechanism provides one potential avenue for the discovery of the next generation of secondary batteries. 
    more » « less