The ability of cells to reorganize in response to external stimuli is important in areas ranging from morphogenesis to tissue engineering. While nematic order is common in biological tissues, it typically only extends to small regions of cells interacting via steric repulsion. On isotropic substrates, elongated cells can co-align due to steric effects, forming ordered but randomly oriented finite-size domains. However, we have discovered that flat substrates with nematic order can induce global nematic alignment of dense, spindle-like cells, thereby influencing cell organization and collective motion and driving alignment on the scale of the entire tissue. Remarkably, single cells are not sensitive to the substrate’s anisotropy. Rather, the emergence of global nematic order is a collective phenomenon that requires both steric effects and molecular-scale anisotropy of the substrate. To quantify the rich set of behaviours afforded by this system, we analyse velocity, positional and orientational correlations for several thousand cells over days. The establishment of global order is facilitated by enhanced cell division along the substrate’s nematic axis, and associated extensile stresses that restructure the cells’ actomyosin networks. Our work provides a new understanding of the dynamics of cellular remodelling and organization among weakly interacting cells.
more »
« less
Fluctuations can induce local nematic order and extensile stress in monolayers of motile cells
Recent experiments in various cell types have shown that two-dimensional tissues often display local nematic order, with evidence of extensile stresses manifest in the dynamics of topological defects. Using a mesoscopic model where tissue flow is generated by fluctuating traction forces coupled to the nematic order parameter, we show that the resulting tissue dynamics can spontaneously produce local nematic order and an extensile internal stress. A key element of the model is the assumption that in the presence of local nematic alignment, cells preferentially crawl along the nematic axis, resulting in anisotropy of fluctuations. Our work shows that activity can drive either extensile or contractile stresses in tissue, depending on the relative strength of the contractility of the cortical cytoskeleton and tractions by cells on the extracellular matrix.
more »
« less
- PAR ID:
- 10286631
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 17
- Issue:
- 11
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 3068 to 3073
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spatiotemporal patterns in multicellular systems are important to understanding tissue dynamics, for instance, during embryonic development and disease. Here, we use a multiphase field model to study numerically the behavior of a near-confluent monolayer of deformable cells with intercellular friction. Varying friction and cell motility drives a solid–liquid transition, and near the transition boundary, we find the emergence of local nematic order of cell deformation driven by shear-aligning cellular flows. Intercellular friction contributes to the monolayer’s viscosity, which significantly increases the spatial correlation in the flow and, concomitantly, the extent of nematic order. We also show that local hexatic and nematic order are tightly coupled and propose a mechanical-geometric model for the colocalization of nematic defects and 5–7 disclination pairs, which are the structural defects in the hexatic phase. Such topological defects coincide with regions of high cell–cell overlap, suggesting that they may mediate cellular extrusion from the monolayer, as found experimentally. Our results delineate a mechanical basis for the recent observation of nematic and hexatic order in multicellular collectives in experiments and simulations and pinpoint a generic pathway to couple topological and physical effects in these systems.more » « less
-
Active nematic liquid crystals have the remarkable ability to spontaneously deform and flow in the absence of any external driving force. While living materials with orientational order, such as the mitotic spindle, can self-assemble in quiescent active phases, reconstituted active systems often display chaotic, periodic, or circulating flows under confinement. Quiescent active nematics are, therefore, quite rare, despite the prediction from active hydrodynamic theory that confinement between two parallel plates can suppress flows. This spontaneous flow transition—named the active Fréedericksz transition by analogy with the conventional Fréedericksz transition in passive nematic liquid crystals under a magnetic field—has been a cornerstone of the field of active matter. Here, we report experimental evidence that confinement in spherical droplets can stabilize the otherwise chaotic dynamics of a 3D extensile active nematics, giving rise to a quiescent—yet still out-of-equilibrium—nematic liquid crystal. The active nematics spontaneously flow when confined in larger droplets. The composite nature of our model system composed of extensile bundles of microtubules and molecular motors dispersed in a passive colloidal liquid crystal allows us to demonstrate how the interplay of activity, nematic elasticity, and confinement impacts the spontaneous flow transition. The critical diameter increases when motor concentration decreases or nematic elasticity increases. Experiments and simulations also demonstrate that the critical confinement depends on the confining geometry, with the critical diameter in droplets being larger than the critical width in channels. Biochemical assays reveal that neither confinement nor nematic elasticity impacts the energy-consumption rate, confirming that the quiescent active phase is the stable out-of-equilibrium phase predicted theoretically. Further experiments in dense arrays of monodisperse droplets show that fluctuations in the droplet composition can smooth the flow transition close to the critical diameter. In conclusion, our work provides experimental validation of the active Fréedericksz transition in 3D active nematics, with potential applications in human health, ecology, and soft robotics. Published by the American Physical Society2024more » « less
-
Sung, Baeckkyoung (Ed.)Collective response to external directional cues like electric fields helps guide tissue development, regeneration, and wound healing. In this study we focus on the impact of anisotropy in cell shape and local cell alignment on the collective response to electric fields. We model elongated cells that have a different accuracy sensing the field depending on their orientation with respect to the field. With this framework, we assume cells are better sensors if they can align their long axes perpendicular to the field. Elongated cells often line up with their long axes in the same direction — “nematic order” – does a nematic cell-cell interaction allow groups of cells to share information about their orientation to sense fields more accurately? We use simulations of a simple model to show that if cells orient themselves perpendicular to their average velocity, alignment of a cell’s long axis to its nearest neighbors’ orientation can in some circumstances enhance the directional response to electric fields. We also show that cell-cell adhesion modulates the accuracy of cells in the group.more » « less
-
Many biological processes involve transport and organization of inclusions in thin fluid interfaces. A key aspect of these assemblies is the active dissipative stresses applied from the inclusions to the fluid interface, resulting in long-range active interfacial flows. We study the effect of these active flows on the self-organization of rod-like inclusions in the interface. Specifically, we consider a di- lute suspension of Brownian rods of length L, embedded in a thin fluid interface of 2D viscosity ηm and surrounded on both sides with 3D fluid domains of viscosity ηf . The momentum transfer from the interfacial flows to the surrounding fluids occurs over length l0 = ηm/ηf , known as Saffman- Delbru ̈ck length. We use zeroth, first and second moments of Smoluchowski equation to obtain the conservation equations for concentration, polar order and nematic order fields, and use linear stability analysis and continuum simulations to study the dynamic variations of these fields as a function of L/l0, the ratio of active to thermal stresses, and the dimensionless self-propulsion velocity of the embedded particles. We find that at sufficiently large activities, the suspensions of active extensile stress (pusher) with no directed motion undergo a finite wavelength nematic ordering, with the length of the ordered domains decreasing with increasing L/l0. The ordering transition is hindered with further increases in L/l0. In contrast, the suspensions with active contractile stress (puller) remain uniform with variations of activity. We notice that the self-propulsion velocity results in significant concentration fluctuations and changes in the size of the order domains that depend on L/l0. Our re- search highlights the role of hydrodynamic interactions in the self-organization of active inclusions on biological interfaces.more » « less
An official website of the United States government

