- Award ID(s):
- 1931134
- PAR ID:
- 10286732
- Date Published:
- Journal Name:
- Journal of the American Medical Informatics Association
- Volume:
- 27
- Issue:
- 10
- ISSN:
- 1067-5027
- Page Range / eLocation ID:
- 1568 to 1575
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Missing hierarchical is-a relations and missing concepts are common quality issues in biomedical ontologies. Non-lattice subgraphs have been extensively studied for automatically identifying missing is-a relations in biomedical ontologies like SNOMED CT. However, little is known about non-lattice subgraphs’ capability to uncover new or missing concepts in biomedical ontologies. In this work, we investigate a lexical-based intersection approach based on non-lattice subgraphs to identify potential missing concepts in SNOMED CT. We first construct lexical features of concepts using their fully specified names. Then we generate hierarchically unrelated concept pairs in non-lattice subgraphs as the candidates to derive new concepts. For each candidate pair of concepts, we conduct an order-preserving intersection based on the two concepts’ lexical features, with the intersection result serving as the potential new concept name suggested. We further perform automatic validation through terminologies in the Unified Medical Language System (UMLS) and literature in PubMed. Applying this approach to the March 2021 release of SNOMED CT US Edition, we obtained 7,702 potential missing concepts, among which 1,288 were validated through UMLS and 1,309 were validated through PubMed. The results showed that non-lattice subgraphs have the potential to facilitate suggestion of new concepts for SNOMED CT.more » « less
-
null (Ed.)Incompleteness of ontologies affects the quality of downstream ontology-based applications. In this paper, we introduce a novel lexical-based approach to automatically detect potentially missing hierarchical IS-A relations in SNOMED CT. We model each concept with an enriched set of lexical features, by leveraging words and noun phrases in the name of the concept itself and the concept's ancestors. Then we perform subset inclusion checking to suggest potentially missing IS-A relations between concepts. We applied our approach to the September 2017 release of SNOMED CT (US edition) which suggested a total of 38,615 potentially missing IS-A relations. For evaluation, a domain expert reviewed a random sample of 100 missing IS-A relations selected from the "Clinical finding" sub-hierarchy, and confirmed 90 are valid (a precision of 90%). Additional review of invalid suggestions further revealed incorrect existing IS-A relations. Our results demonstrate that systematic analysis of the enriched lexical features of concepts is an effective approach to identify potentially missing hierarchical IS-A relations in SNOMED CT.more » « less
-
Abstract Background As biomedical knowledge is rapidly evolving, concept enrichment of biomedical terminologies is an active research area involving automatic identification of missing or new concepts. Previously, we prototyped a lexical-based formal concept analysis (FCA) approach in which concepts were derived by intersecting bags of words, to identify potentially missing concepts in the National Cancer Institute (NCI) Thesaurus. However, this prototype did not handle concept naming and positioning. In this paper, we introduce a sequenced-based FCA approach to identify potentially missing concepts, supporting concept naming and positioning.
Methods We consider the concept name sequences as FCA attributes to construct the formal context. The concept-forming process is performed by computing the longest common substrings of concept name sequences. After new concepts are formalized, we further predict their potential positions in the original hierarchy by identifying their supertypes and subtypes from original concepts. Automated validation via external terminologies in the Unified Medical Language System (UMLS) and biomedical literature in PubMed is performed to evaluate the effectiveness of our approach.
Results We applied our sequenced-based FCA approach to all the sub-hierarchies under
Disease or Disorder in the NCI Thesaurus (19.08d version) and five sub-hierarchies underClinical Finding andProcedure in the SNOMED CT (US Edition, March 2020 release). In total, 1397 potentially missing concepts were identified in the NCI Thesaurus and 7223 in the SNOMED CT. For NCI Thesaurus, 85 potentially missing concepts were found in external terminologies and 315 of the remaining 1312 appeared in biomedical literature. For SNOMED CT, 576 were found in external terminologies and 1159 out of the remaining 6647 were found in biomedical literature.Conclusion Our sequence-based FCA approach has shown the promise for identifying potentially missing concepts in biomedical terminologies.
-
Abstract Biomedical terminologies play a vital role in managing biomedical data. Missing IS-A relations in a biomedical terminology could be detrimental to its downstream usages. In this paper, we investigate an approach combining logical definitions and lexical features to discover missing IS-A relations in two biomedical terminologies: SNOMED CT and the National Cancer Institute (NCI) thesaurus. The method is applied to unrelated concept-pairs within non-lattice subgraphs: graph fragments within a terminology likely to contain various inconsistencies. Our approach first compares whether the logical definition of a concept is more general than that of the other concept. Then, we check whether the lexical features of the concept are contained in those of the other concept. If both constraints are satisfied, we suggest a potentially missing IS-A relation between the two concepts. The method identified 982 potential missing IS-A relations for SNOMED CT and 100 for NCI thesaurus. In order to assess the efficacy of our approach, a random sample of results belonging to the “Clinical Findings” and “Procedure” subhierarchies of SNOMED CT and results belonging to the “Drug, Food, Chemical or Biomedical Material” subhierarchy of the NCI thesaurus were evaluated by domain experts. The evaluation results revealed that 118 out of 150 suggestions are valid for SNOMED CT and 17 out of 20 are valid for NCI thesaurus.
-
null (Ed.)Abstract Background The National Cancer Institute (NCI) Thesaurus provides reference terminology for NCI and other systems. Previously, we proposed a hybrid prototype utilizing lexical features and role definitions of concepts in non-lattice subgraphs to identify missing IS-A relations in the NCI Thesaurus. However, no domain expert evaluation was provided in our previous work. In this paper, we further enhance the hybrid approach by leveraging a novel lexical feature—roots of noun chunks within concept names. Formal evaluation of our enhanced approach is also performed. Method We first compute all the non-lattice subgraphs in the NCI Thesaurus. We model each concept using its role definitions, words and roots of noun chunks within its concept name and its ancestor’s names. Then we perform subsumption testing for candidate concept pairs in the non-lattice subgraphs to automatically detect potentially missing IS-A relations. Domain experts evaluated the validity of these relations. Results We applied our approach to 19.08d version of the NCI Thesaurus. A total of 55 potentially missing IS-A relations were identified by our approach and reviewed by domain experts. 29 out of 55 were confirmed as valid by domain experts and have been incorporated in the newer versions of the NCI Thesaurus. 7 out of 55 further revealed incorrect existing IS-A relations in the NCI Thesaurus. Conclusions The results showed that our hybrid approach by leveraging lexical features and role definitions is effective in identifying potentially missing IS-A relations in the NCI Thesaurus.more » « less