skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional foregut anatomy of the blue–green sharpshooter illustrated using a 3D model
Sharpshooter leafhoppers (Hemiptera: Cicadellidae: Cicadellinae) are important vectors of the plant pathogenic bacterium Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadaceae). This pathogen causes economically significant diseases in olive, citrus, and grapes on multiple continents. Bacterial acquisition and inoculation mechanisms are linked to X. fastidiosa biofilm formation and fluid dynamics in the functional foregut of sharpshooters, which together result in egestion (expulsion) of fluids likely carrying bacteria. One key X. fastidiosa vector is the blue–green sharpshooter, Graphocephala atropunctata (Signoret, 1854). Herein, a 3D model of the blue–green sharpshooter functional foregut is derived from a meta-analysis of published microscopy images. The model is used to illustrate preexisting and newly defined anatomical terminology that is relevant for investigating fluid dynamics in the functional foregut of sharpshooters. The vivid 3D illustrations herein and supplementary interactive 3D figures are suitable resources for multidisciplinary researchers who may be unfamiliar with insect anatomy. The 3D model can also be used in future fluid dynamic simulations to better understand acquisition, retention, and inoculation of X. fastidiosa. Improved understanding of these processes could lead to new targets for preventing diseases caused by X. fastidiosa.  more » « less
Award ID(s):
1631776
PAR ID:
10286740
Author(s) / Creator(s):
Date Published:
Journal Name:
Scientific report
Volume:
11
Issue:
6536
ISSN:
0112-2398
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. McMahon, Katherine (Ed.)
    ABSTRACT The glassy-winged sharpshooter,Homalodisca vitripennisGermar, is an invasive xylem-feeding leafhopper with a devastating economic impact on California agriculture through transmission of the plant pathogen,Xylella fastidiosa. While studies have focused onX. fastidiosaor known symbionts ofH. vitripennis, little work has been done at the scale of the microbiome (the bacterial community) or mycobiome (the fungal community). Here, we characterize the mycobiome and the microbiome ofH. vitripennisacross Southern California and explore correlations with captivity and host insecticide resistance status. Using high-throughput sequencing of the ribosomal internal transcribed spacer 1 region and the 16S rRNA gene to profile the mycobiome and microbiome, respectively, we found that while theH. vitripennismycobiome significantly varied across Southern California, the microbiome did not. We also observed a significant difference in both the mycobiome and microbiome between captive and wildH. vitripennis. Finally, we found that the mycobiome, but not the microbiome, was correlated with insecticide resistance status in wildH. vitripennis. This study serves as a foundational look at theH. vitripennismycobiome and microbiome across Southern California. Future work should explore the putative link between microbes and insecticide resistance status and investigate whether microbial communities should be considered inH. vitripennismanagement practices. IMPORTANCEThe glassy-winged sharpshooter is an invasive leafhopper that feeds on the xylem of plants and transmits the devastating pathogen,Xylella fastidiosa, resulting in significant economic damage to California’s agricultural system. While studies have focused on this pathogen or obligate symbionts of the glassy-winged sharpshooter, there is limited knowledge of the bacterial and fungal communities that make up its microbiome and mycobiome. To address this knowledge gap, we explored the composition of the mycobiome and the microbiome of the glassy-winged sharpshooter across Southern California and identified differences associated with geography, captivity, and host insecticide resistance status. Understanding sources of variation in the microbial communities associated with the glassy-winged sharpshooter is an important consideration for developing management strategies to control this invasive insect. This study is a first step toward understanding the role microbes may play in the glassy-winged sharpshooter’s resistance to insecticides. 
    more » « less
  2. Alexandre, Gladys (Ed.)
    ABSTRACT Xylella fastidiosa infects several economically important crops in the Americas, and it also recently emerged in Europe. Here, using a set of Xylella genomes reflective of the genus-wide diversity, we performed a pan-genome analysis based on both core and accessory genes for two purposes: (i) to test associations between genetic divergence and plant host species and (ii) to identify positively selected genes that are potentially involved in arms-race dynamics. For the former, tests yielded significant evidence for the specialization of X. fastidiosa to plant host species. This observation contributes to a growing literature suggesting that the phylogenetic history of X. fastidiosa lineages affects the host range. For the latter, our analyses uncovered evidence of positive selection across codons for 5.3% (67 of 1,257) of the core genes and 5.4% (201 of 3,691) of the accessory genes. These genes are candidates to encode interacting factors with plant and insect hosts. Most of these genes had unknown functions, but we did identify some tractable candidates, including nagZ_2 , which encodes a beta-glucosidase that is important for Neisseria gonorrhoeae biofilm formation; cya , which modulates gene expression in pathogenic bacteria, and barA , a membrane associated histidine kinase that has roles in cell division, metabolism, and pili formation. IMPORTANCE Xylella fastidiosa causes devasting diseases to several critical crops. Because X. fastidiosa colonizes and infects many plant species, it is important to understand whether the genome of X. fastidiosa has genetic determinants that underlie specialization to specific host plants. We analyzed genome sequences of X. fastidiosa to investigate evolutionary relationships and to test for evidence of positive selection on specific genes. We found a significant signal between genome diversity and host plants, consistent with bacterial specialization to specific plant hosts. By screening for positive selection, we identified both core and accessory genes that may affect pathogenicity, including genes involved in biofilm formation. 
    more » « less
  3. null (Ed.)
    Multicolor carbon dots (CDs) have been developed recently and demonstrate great potential in bio-imaging, sensing, and LEDs. However, the fluorescence mechanism of their tunable colors is still under debate, and efficient separation methods are still challenging. Herein, we synthesized multicolor polymeric CDs through solvothermal treatment of citric acid and urea in formamide. Automated reversed-phase column separation was used to achieve fractions with distinct colors, including blue, cyan, green, yellow, orange and red. This work explores the physicochemical properties and fluorescence origins of the red, green, and blue fractions in depth with combined experimental and computational methods. Three dominant fluorescence mechanism hypotheses were evaluated by comparing time-dependent density functional theory and molecular dynamics calculation results to measured characteristics. We find that blue fluorescence likely comes from embedded small molecules trapped in carbonaceous cages, while pyrene analogs are the most likely origin for emission at other wavelengths, especially in the red. Also important, upon interaction with live cells, different CD color fractions are trafficked to different sub-cellular locations. Super-resolution imaging shows that the blue CDs were found in a variety of organelles, such as mitochondria and lysosomes, while the red CDs were primarily localized in lysosomes. These findings significantly advance our understanding of the photoluminescence mechanism of multicolor CDs and help to guide future design and applications of these promising nanomaterials. 
    more » « less
  4. Developing chemically and thermally stable, highly efficient green-emitting inorganic phosphors is a significant challenge in solid-state lighting. One accessible pathway for achieving green emission is by forming a solid solution with superior blue-emitting materials. In this work, we demonstrate that the cyan-emission ( λ em = 481 nm) of the BaScO 2 F:Eu 2+ perovskite can be red-shifted by forming a solid solution following (Ba 1− x Sr x ) 0.98 Eu 0.02 ScO 2 F ( x = 0, 0.075, 0.15, 0.25, 0.33, 0.40). Although green emission is achieved ( λ em = 516 nm) as desired, the thermal quenching (TQ) resistance is reduced, and the photoluminescence quantum yield (PLQY) drops by 65%. Computation reveals the source of these changes. Surprisingly, a basic density functional theory analysis shows the gradual Sr Ba substitution has negligible effects on the band gap ( E g ) energy, suggesting the activation energy barrier for the thermal ionization quenching remains unchanged, while the nearly constant Debye temperature indicates no loss of average structural rigidity to explain the decrease in the PLQY. Instead, temperature-dependent ab initio molecular dynamics (AIMD) simulations show that gradual changes of the Eu 2+ ion's local coordination environment rigidity are responsible for the drop in the observed TQ and PLQY. These results express the need to computationally analyze the local rare-earth environment as a function of temperature to understand the fundamental origin of optical properties in new inorganic phosphors. 
    more » « less
  5. Abstract The utility of visible light for 3D printing has increased in recent years owing to its accessibility and reduced materials interactions, such as scattering and absorption/degradation, relative to traditional UV light‐based processes. However, photosystems that react efficiently with visible light often require multiple molecular components and have strong and diverse absorption profiles, increasing the complexity of formulation and printing optimization. Herein, a streamlined method to select and optimize visible light 3D printing conditions is described. First, green light liquid crystal display (LCD) 3D printing using a novel resin is optimized through traditional empirical methods, which involves resin component selection, spectroscopic characterization, time‐intensive 3D printing under several different conditions, and measurements of dimensional accuracy for each printed object. Subsequent analytical quantification of dynamic photon absorption during green light polymerizations unveils relationships to cure depth that enables facile resin and 3D printing optimization using a model that is a modification to the Jacob's equation traditionally used for stereolithographic 3D printing. The approach and model are then validated using a distinct green light‐activated resin for two types of projection‐based 3D printing. 
    more » « less