skip to main content


Search for: All records

Award ID contains: 1631776

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ants alter soil moisture and nutrient distributions during foraging and nest construction. Here, we investigated how the effects of ants on soil vary with elevation. We compared moisture, carbon, and nitrogen levels in soil samples taken both within nests and nearby the nests (control) of two subterranean ant species. Using a paired design, we sampled 17 sites along elevation gradients in two California mountain ranges (Formica francoeuriin the San Jacinto mountains andFormica sibyllain the Sierra Nevada). We observed an interaction between soil carbon and nitrogen composition and elevation in each mountain range. At lower elevations, nest soil had lower amounts of carbon and nitrogen than control soil, but at higher elevations, nest soil had higher amounts of carbon and nitrogen than control soil. However, our sampling method may only breach the interior of ant nests in some environments. The nest soil moisture did not show any elevational patterns in either mountain range. Ants likely modulate soil properties differently across environmental gradients, but testing this effect must account for variable nest architecture and other climate and landscape differences across diverse habitats.

     
    more » « less
  2. Synopsis

    Studies on the physiological states of wild-caught organisms are essential to uncovering the links between ecological and physiological processes. Bumble bee queens emerge from overwintering in the spring. At this time, queens develop their ovaries and search for a nest site in which to start a colony. Whether these two processes, ovary development and nest-searching, interact with or influence one another remains an unresolved question in behavioral physiology. We explored the hypothesis that ovary development and nest-searching might be mechanistically connected, by testing whether (1) ovary development precedes nest-searching behavior; (2) nest occupation precedes ovary development; or (3) ovary development and nest-searching occur independently, in bumble bee (Bombus vosnesenskii) queens. We collected queens either nest-searching (and thus prior to occupying a nest) or pollen-collecting (and thus provisioning an occupied nest) and measured their degree of ovary activation. We further screened these queens for parasites or other symbionts, to identify additional factors that may impact their reproductive success at this time. We found that queens searched for and occupied nests at all stages of ovary development, indicating that these processes occur independently in this system. Nest-searching queens were more likely to have substantial mite loads than pollen-collecting queens, who had already located and occupied a nest. However, mite loads did not significantly predict ovary developmental status. Collectively, our work shows that nesting status and symbionts alone are insufficient to explain the variation in spring bumble bee queen ovary development. We propose that ovary development and nest-searching occur opportunistically, which may enable queens to begin laying eggs earlier in the season than if these processes occurred in discrete succession.

     
    more » « less
  3. Abstract

    Social insects are among the most abundant arthropods in terrestrial ecosystems, where they provide ecosystem services. The effect of subterranean activity of ants on soil is well-studied, yet little is known about nest architecture due to the difficulty of observing belowground patterns. Furthermore, many species’ ranges span environmental gradients, and their nest architecture is likely shaped by the climatic and landscape features of their specific habitats. We investigated the effects of two temperature treatments on the shape and size of nests built byFormica podzolicaants collected from high and low elevations in the Colorado Rocky Mountains in a full factorial experiment. Ants nested in experimental chambers with soil surface temperatures matching the local temperatures of sample sites. We observed a plastic response of nest architecture to conditions experienced during excavation; workers experiencing a high temperature excavated deeper nests than those experiencing a cooler temperature. Further, we found evidence of local adaptation to temperature, with a significant interaction effect of natal elevation and temperature treatment on nest size and complexity. Specifically, workers from high elevation sites built larger nests with more tunnels when placed in the cool surface temperature treatment, and workers from low elevation sites exhibited the opposite pattern. Our results suggest that subterranean ant nest architecture is shaped by a combination of plastic and locally adapted building behaviors; we suggest that the flexibility of this ‘extended phenotype’ likely contributes to the widespread success of ants.

     
    more » « less
  4. null (Ed.)
    Sharpshooter leafhoppers (Hemiptera: Cicadellidae: Cicadellinae) are important vectors of the plant pathogenic bacterium Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadaceae). This pathogen causes economically significant diseases in olive, citrus, and grapes on multiple continents. Bacterial acquisition and inoculation mechanisms are linked to X. fastidiosa biofilm formation and fluid dynamics in the functional foregut of sharpshooters, which together result in egestion (expulsion) of fluids likely carrying bacteria. One key X. fastidiosa vector is the blue–green sharpshooter, Graphocephala atropunctata (Signoret, 1854). Herein, a 3D model of the blue–green sharpshooter functional foregut is derived from a meta-analysis of published microscopy images. The model is used to illustrate preexisting and newly defined anatomical terminology that is relevant for investigating fluid dynamics in the functional foregut of sharpshooters. The vivid 3D illustrations herein and supplementary interactive 3D figures are suitable resources for multidisciplinary researchers who may be unfamiliar with insect anatomy. The 3D model can also be used in future fluid dynamic simulations to better understand acquisition, retention, and inoculation of X. fastidiosa. Improved understanding of these processes could lead to new targets for preventing diseases caused by X. fastidiosa. 
    more » « less
  5. null (Ed.)
    Mitigating label noise is a crucial problem in classification. Noise filtering is an effective method of dealing with label noise which does not need to estimate the noise rate or rely on any loss function. However, most filtering methods focus mainly on binary classification, leaving the more difficult counterpart problem of multiclass classification relatively unexplored. To remedy this deficit, we present a definition for label noise in a multiclass setting and propose a general framework for a novel label noise filtering learning method for multiclass classification. Two examples of noise filtering methods for multiclass classification, multiclass complete random forest (mCRF) and multiclass relative density, are derived from their binary counterparts using our proposed framework. In addition, to optimize the NI_threshold hyperparameter in mCRF, we propose two new optimization methods: a new voting cross-validation method and an adaptive method that employs a 2-means clustering algorithm. Furthermore, we incorporate SMOTE into our label noise filtering learning framework to handle the ubiquitous problem of imbalanced data in multiclass classification. We report experiments on both synthetic data sets and UCI benchmarks to demonstrate our proposed methods are highly robust to label noise in comparison with state-of-the-art baselines. All code and data results are available at https://github.com/syxiaa/Multiclass-Label-Noise-Filtering-Learning. 
    more » « less
  6. null (Ed.)
    Bumble bee queens initiate nests solitarily and transition to living socially once they successfully rear their first cohort of offspring. Bumble bees are disproportionately important for early season pollination, and many populations are experiencing dramatic declines. In this system, the onset of the social stage is critical for nest survival, yet the mechanisms that facilitate this transition remain understudied. Further, the majority of conservation efforts target the social stage of the bumble bee life cycle and do not address the solitary founding stage. We experimentally manipulated the timing of worker emergence in young nests of bumble bee (Bombus impatiens) queens to determine whether and how queen fecundity and survival are impacted by the emergence of workers in the nest. We found that queens with workers added to the nest exhibit increased ovary activation, accelerated egg laying, elevated juvenile hormone (JH) titres and also lower mortality relative to solitary queens. We also show that JH is more strongly impacted by the social environment than associated with queen reproductive state, suggesting that this key regulator of insect reproduction has expanded its function in bumble bees to also influence social organization. We further demonstrate that these effects are independent of queen social history, suggesting that this underlying mechanism promoting queen fecundity is reversible and short lived. Synchronization between queen reproductive status and emergence of workers in the nest may ultimately increase the likelihood of early nesting success in social systems with solitary nest founding. Given that bumble bee workers regulate queen physiology as we have demonstrated, the timing of early worker emergence in the nest likely impacts queen fitness, colony developmental trajectories and ultimately nesting success. Collectively, our findings underline the importance of conservation interventions for bumble bees that support the early nesting period and facilitate the production and maintenance of workers in young nests 
    more » « less
  7. null (Ed.)
    Basic Linear Algebra Subprograms (BLAS) is a core library in scientific computing and machine learning. This paper presents FT-BLAS, a new implementation of BLAS routines that not only tolerates soft errors on the fly, but also provides comparable performance to modern state-of-the-art BLAS libraries on widely-used processors such as Intel Skylake and Cascade Lake. To accommodate the features of BLAS, which contains both memory-bound and computing-bound routines, we propose a hybrid strategy to incorporate fault tolerance into our brand-new BLAS implementation: duplicating computing instructions for memory-bound Level-1 and Level-2 BLAS routines and incorporating an Algorithm-Based Fault Tolerance mechanism for computing-bound Level-3 BLAS routines. Our high performance and low overhead are obtained from delicate assembly-level optimization and a kernel-fusion approach to the computing kernels. Experimental results demonstrate that FT-BLAS offers high reliability and high performance -- faster than Intel MKL, OpenBLAS, and BLIS by up to 3.50%, 22.14% and 21.70%, respectively, for routines spanning all three levels of BLAS we benchmarked, even under hundreds of errors injected per minute. 
    more » « less