Abstract Understanding the effects of tree species and their mycorrhizal association on soil processes is critical for predicting the ecosystem consequences of species shifts owing to global change and forest management decisions. While it is well established that forests dominated by different mycorrhizal types can vary in how they cycle carbon (C), nitrogen (N) and phosphorus (P), the degree to which these patterns are driven by microbial‐mediated enzyme activity (EA) and ecoenzymatic stoichiometry (ES) remains elusive. Here, we synthesized the effects of mycorrhizal association on seven soil enzymes involved in microbial C, N and P acquisition and ES using data from 56 peer‐reviewed papers. We found that relative to soil in ectomycorrhizal (EcM) trees, soil in arbuscular mycorrhizal (AM) trees exhibited greater activity of some C acquisition enzymes (e.g. beta‐glucosidase; BG) and higher ecoenzymatic ratios of BG/NAG (N‐acetyl‐glucosaminidase) and BG/AP (acid phosphatase). These results supported that AM trees had rapid C and nutrient turnover rates, inorganic nutrient economics and high soil microbial C limitation. We also found evidence for an organic nutrient economy and greater soil microbial demand for nutrients in EcM trees compared to AM trees. In addition, the effect of mycorrhizal association on the activity of certain soil enzymes and enzymatic stoichiometry (i.e. BG and BG/NAG ratio) appeared to be associated with the differences in soil pH, phylogenetic group (i.e. conifers and broadleaves) and leaf habit (i.e. evergreen and deciduous) between AM and EcM trees. The results from the global meta‐analysis suggested that soil EA and ES appear to play critical roles in shaping the differences in the nutrient economy between AM and EcM tree species, but leaf morphology and soil conditions should be considered in evaluations of soil processes in forests of different mycorrhizal associations. Given that most of the studies in the database were from the temperate and subtropical regions, further research in other biomes is needed to elucidate the underlying mechanisms driving the mycorrhizal effect at the global scale. Read the free Plain Language Summary for this article on the Journal blog.
more »
« less
The motion of trees in the wind: a data synthesis
Abstract. Interactions between wind and trees control energy exchanges between theatmosphere and forest canopies. This energy exchange can lead to thewidespread damage of trees, and wind is a key disturbance agent in many ofthe world's forests. However, most research on this topic has focused onconifer plantations, where risk management is economically important, ratherthan broadleaf forests, which dominate the forest carbon cycle. This studybrings together tree motion time-series data to systematically evaluate thefactors influencing tree responses to wind loading, including data from bothbroadleaf and coniferous trees in forests and open environments. We found that the two most descriptive features of tree motion were (a) the fundamental frequency, which is a measure of the speed at which a treesways and is strongly related to tree height, and (b) the slope of the powerspectrum, which is related to the efficiency of energy transfer from wind totrees. Intriguingly, the slope of the power spectrum was found to remainconstant from medium to high wind speeds for all trees in this study. Thissuggests that, contrary to some predictions, damping or amplificationmechanisms do not change dramatically at high wind speeds, and therefore winddamage risk is related, relatively simply, to wind speed. Conifers from forests were distinct from broadleaves in terms of theirresponse to wind loading. Specifically, the fundamental frequency of forestconifers was related to their size according to the cantilever beam model(i.e. vertically distributed mass), whereas broadleaves were betterapproximated by the simple pendulum model (i.e. dominated by the crown).Forest conifers also had a steeper slope of the power spectrum. We interpretthese finding as being strongly related to tree architecture; i.e. conifersgenerally have a simple shape due to their apical dominance, whereasbroadleaves exhibit a much wider range of architectures with more dominantcrowns.
more »
« less
- Award ID(s):
- 1700983
- PAR ID:
- 10286813
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Biogeosciences
- Volume:
- 18
- Issue:
- 13
- ISSN:
- 1726-4189
- Page Range / eLocation ID:
- 4059 to 4072
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding the influence of roughness and terrain slope on stable boundary layer turbulence is challenging. This is investigated using observations collected from October to November of 2018 during the Stable Atmospheric Variability ANd Transport (SAVANT) field campaign conducted in a shallow sloping Midwestern field. We analyze the turbulence velocity scale and its variation with the mean wind speed using observations up to 10–20 m on four meteorological towers located along a shallow gully. The roughness length for momentum over this complex terrain varied with wind direction from 0.0049 m to a maximum of 0.12 m for winds coming through deciduous trees present in the field. The variation of the turbulence velocity with wind speed shows a transition from a weak wind regime to a stronger wind regime, as reported by past studies. This transition is not observed for winds coming from the tree area, where turbulence is enhanced even for weak wind speeds. For weak stratification and stronger winds, the turbulent velocity scale increased with an increase in roughness while the terrain slope is seen to have a weak influence. The sizes of the dominant turbulent eddies seen from the vertical velocity power spectra are observed to be larger for winds coming through the tree area. The turbulence enhancement by the trees is found to be strong within a fetch distance of 7 times the tree height and not observable at 16 times of the tree height.more » « less
-
This study aims to leverage the relationship between fluid dynamic loading and resulting structural deformation to infer the incident flow speed from measurements of time-dependent structure kinematics. Wind tunnel studies are performed on cantilevered cylinders and trees. Tip deflections of the wind-loaded structures are captured in time series data, and a physical model of the relationship between force and deflection is applied to calculate the instantaneous wind speed normalized with respect to a known reference wind speed. Wind speeds inferred from visual measurements showed consistent agreement with ground truth anemometer measurements for different cylinder and tree configurations. These results suggest an approach for non-intrusive, quantitative flow velocimetry that eliminates the need to directly visualize or instrument the flow itself.more » « less
-
Abstract Nature‐based climate solutions (NCS) are championed as a primary tool to mitigate climate change, especially in forested regions capable of storing and sequestering vast amounts of carbon. New England is one of the most heavily forested regions in the United States (>75% forested by land area), and forest carbon is a significant component of climate mitigation policies. Large infrequent disturbances, such as hurricanes, are a major source of uncertainty and risk for policies relying on forest carbon for climate mitigation, especially as climate change is projected to alter the intensity and extent of hurricanes. To date, most research into disturbance impacts on forest carbon stocks has focused on fire. Here, we show that a single hurricane in the region can down between 121 and 250 MMTCO2e or 4.6%–9.4% of the total aboveground forest carbon, much greater than the carbon sequestered annually by New England's forests (16 MMTCO2e year−1). However, emissions from hurricanes are not instantaneous; it takes approximately 19 years for downed carbon to become a net emission and 100 years for 90% of the downed carbon to be emitted. Reconstructing hurricanes with the HURRECON and EXPOS models across a range of historical and projected wind speeds, we find that an 8% and 16% increase in hurricane wind speeds leads to a 10.7‐ and 24.8‐fold increase in the extent of high‐severity damaged areas (widespread tree mortality). Increased wind speed also leads to unprecedented geographical shifts in damage, both inland and northward, into heavily forested regions traditionally less affected by hurricanes. Given that a single hurricane can emit the equivalent of 10+ years of carbon sequestered by forests in New England, the status of these forests as a durable carbon sink is uncertain. Understanding the risks to forest carbon stocks from disturbances is necessary for decision‐makers relying on forests as a NCS.more » « less
-
Windthrow, or the uprooting of trees by extreme wind gusts, is a natural forest disturbance that creates microhabitats, turns over soil, alters hydrology, and removes carbon from the above-ground carbon stock. Long recurrence intervals between extreme wind events, however, make direct observations of windthrow rare, challenging our understanding of this important disturbance process. To overcome this difficulty, we present an approach that uses the geomorphic record of hillslope topographic roughness as a proxy for the occurrence of windthrow. The approach produces a probability function of the number of annual windthrow events for a maximum wind speed, allowing us to explore how windthrow or tree strengths may change due to shifting wind climates. Slight changes to extreme wind speeds may drive comparatively large changes in windthrow production rates or force trees to respond and change the distribution. We also highlight that topographic roughness has the potential to serve as an important archive of extreme wind speeds.more » « less
An official website of the United States government

