skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
We provide a detailed asymptotic study of gradient flow trajectories and their implicit optimization bias when minimizing the exponential loss over "diagonal linear networks". This is the simplest model displaying a transition between "kernel" and non-kernel ("rich" or "active") regimes. We show how the transition is controlled by the relationship between the initialization scale and how accurately we minimize the training loss. Our results indicate that some limit behaviors of gradient descent only kick in at ridiculous training accuracies (well beyond 10−100). Moreover, the implicit bias at reasonable initialization scales and training accuracies is more complex and not captured by these limits.  more » « less
Award ID(s):
1764032
PAR ID:
10286847
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A recent line of work studies overparametrized neural networks in the “kernel regime,” i.e. when during training the network behaves as a kernelized linear predictor, and thus, training with gradient descent has the effect of finding the corresponding minimum RKHS norm solution. This stands in contrast to other studies which demonstrate how gradient descent on overparametrized networks can induce rich implicit biases that are not RKHS norms. Building on an observation by \citet{chizat2018note}, we show how the \textbf{\textit{scale of the initialization}} controls the transition between the “kernel” (aka lazy) and “rich” (aka active) regimes and affects generalization properties in multilayer homogeneous models. We provide a complete and detailed analysis for a family of simple depth-D linear networks that exhibit an interesting and meaningful transition between the kernel and rich regimes, and highlight an interesting role for the \emph{width} of the models. We further demonstrate this transition empirically for matrix factorization and multilayer non-linear networks. 
    more » « less
  2. We examine the implicit bias of mirror flow in least squares error regression with wide and shallow neural networks. For a broad class of potential functions, we show that mirror flow exhibits lazy training and has the same implicit bias as ordinary gradient flow when the network width tends to infinity. For univariate ReLU networks, we characterize this bias through a variational problem in function space. Our analysis includes prior results for ordinary gradient flow as a special case and lifts limitations which required either an intractable adjustment of the training data or networks with skip connections. We further introduce scaled potentials and show that for these, mirror flow still exhibits lazy training but is not in the kernel regime. For univariate networks with absolute value activations, we show that mirror flow with scaled potentials induces a rich class of biases, which generally cannot be captured by an RKHS norm. A takeaway is that whereas the parameter initialization determines how strongly the curvature of the learned function is penalized at different locations of the input space, the scaled potential determines how the different magnitudes of the curvature are penalized. 
    more » « less
  3. We examine the implicit bias of mirror flow in least squares error regression with wide and shallow neural networks. For a broad class of potential functions, we show that mirror flow exhibits lazy training and has the same implicit bias as ordinary gradient flow when the network width tends to infinity. For univariate ReLU networks, we characterize this bias through a variational problem in function space. Our analysis includes prior results for ordinary gradient flow as a special case and lifts limitations which required either an intractable adjustment of the training data or networks with skip connections. We further introduce scaled potentials and show that for these, mirror flow still exhibits lazy training but is not in the kernel regime. For univariate networks with absolute value activations, we show that mirror flow with scaled potentials induces a rich class of biases, which generally cannot be captured by an RKHS norm. A takeaway is that whereas the parameter initialization determines how strongly the curvature of the learned function is penalized at different locations of the input space, the scaled potential determines how the different magnitudes of the curvature are penalized. 
    more » « less
  4. The deep linear network (DLN) is a model for implicit regularization in gradient based optimization of overparametrized learning architectures. Training the DLN corresponds to a Riemannian gradient flow, where the Riemannian metric is defined by the architecture of the network and the loss function is defined by the learning task. We extend this geometric framework, obtaining explicit expressions for the volume form, including the case when the network has infinite depth. We investigate the link between the Riemannian geometry and the training asymptotics for matrix completion with rigorous analysis and numerics. We propose that under small initialization, implicit regularization is a result of bias towards high state space volume. 
    more » « less
  5. We investigate gradient descent training of wide neural networks and the corresponding implicit bias in function space. For univariate regression, we show that the solution of training a width-n shallow ReLU network is within n−1/2 of the function which fits the training data and whose difference from the initial function has the smallest 2-norm of the second derivative weighted by a curvature penalty that depends on the probability distribution that is used to initialize the network parameters. We compute the curvature penalty function explicitly for various common initialization procedures. For instance, asymmetric initialization with a uniform distribution yields a constant curvature penalty, and thence the solution function is the natural cubic spline interpolation of the training data. For stochastic gradient descent we obtain the same implicit bias result. We obtain a similar result for different activation functions. For multivariate regression we show an analogous result, whereby the second derivative is replaced by the Radon transform of a fractional Laplacian. For initialization schemes that yield a constant penalty function, the solutions are polyharmonic splines. Moreover, we show that the training trajectories are captured by trajectories of smoothing splines with decreasing regularization strength. 
    more » « less