skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Linear Networks for Matrix Completion—an Infinite Depth Limit
The deep linear network (DLN) is a model for implicit regularization in gradient based optimization of overparametrized learning architectures. Training the DLN corresponds to a Riemannian gradient flow, where the Riemannian metric is defined by the architecture of the network and the loss function is defined by the learning task. We extend this geometric framework, obtaining explicit expressions for the volume form, including the case when the network has infinite depth. We investigate the link between the Riemannian geometry and the training asymptotics for matrix completion with rigorous analysis and numerics. We propose that under small initialization, implicit regularization is a result of bias towards high state space volume.  more » « less
Award ID(s):
2107205
PAR ID:
10549937
Author(s) / Creator(s):
; ;
Publisher / Repository:
Society for Industrial and Applied Mathematics
Date Published:
Journal Name:
SIAM Journal on Applied Dynamical Systems
Volume:
22
Issue:
4
ISSN:
1536-0040
Page Range / eLocation ID:
3208 to 3232
Subject(s) / Keyword(s):
generalizability, implicit regularization, Riemannian gradient flow, deep linear network, matrix completion
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In deep learning, often the training process nds an interpolator (a solution with 0 training loss), but the test loss is still low. This phenomenon, known as benign overfitting, is a major mystery that received a lot of recent attention. One common mechanism for benign overfitting is implicit regularization, where the training process leads to additional properties for the interpolator, often characterized by minimizing certain norms. However, even for a simple sparse linear regression problem y = Ax+ noise with sparse x , neither minimum l_1 orl_`2 norm interpolator gives the optimal test loss. In this work, we give a different parametrization of the model which leads to a new implicit regularization effect that combines the benefit of l_1 and l_2 interpolators. We show that training our new model via gradient descent leads to an interpolator with near-optimal test loss. Our result is based on careful analysis of the training dynamics and provides another example of implicit regularization effect that goes beyond norm minimization. 
    more » « less
  2. null (Ed.)
    We introduce a notion of usable information contained in the representation learned by a deep network, and use it to study how optimal representations for the task emerge during training. We show that the implicit regularization coming from training with Stochastic Gradient Descent with a high learning-rate and small batch size plays an important role in learning minimal sufficient representations for the task. In the process of arriving at a minimal sufficient representation, we find that the content of the representation changes dynamically during training. In particular, we find that semantically meaningful but ultimately irrelevant information is encoded in the early transient dynamics of training, before being later discarded. In addition, we evaluate how perturbing the initial part of training impacts the learning dynamics and the resulting representations. We show these effects on both perceptual decision-making tasks inspired by neuroscience literature, as well as on standard image classification tasks. 
    more » « less
  3. We consider networks, trained via stochastic gradient descent to minimize L2 loss, with the training labels perturbed by independent noise at each iteration. We characterize the behavior of the training dynamics near any parameter vector that achieves zero training error, in terms of an implicit regularization term corresponding to the sum over the datapoints, of the squared L2 of the gradient of the model with respect to the parameter vector, evaluated at each data point. This holds for networks of any connectivity, width,depth, and choice of activation function. We interpret this implicit regularization term for three simple settings: matrix sensing, two layer ReLU networks trained on one-dimensional data, and two layer networks with sigmoid activations trained on a single datapoint. For these settings, we show why this new and general implicit regularization effect drives the networks towards "simple" models. 
    more » « less
  4. We investigate gradient descent training of wide neural networks and the corresponding implicit bias in function space. For univariate regression, we show that the solution of training a width-n shallow ReLU network is within n−1/2 of the function which fits the training data and whose difference from the initial function has the smallest 2-norm of the second derivative weighted by a curvature penalty that depends on the probability distribution that is used to initialize the network parameters. We compute the curvature penalty function explicitly for various common initialization procedures. For instance, asymmetric initialization with a uniform distribution yields a constant curvature penalty, and thence the solution function is the natural cubic spline interpolation of the training data. For stochastic gradient descent we obtain the same implicit bias result. We obtain a similar result for different activation functions. For multivariate regression we show an analogous result, whereby the second derivative is replaced by the Radon transform of a fractional Laplacian. For initialization schemes that yield a constant penalty function, the solutions are polyharmonic splines. Moreover, we show that the training trajectories are captured by trajectories of smoothing splines with decreasing regularization strength. 
    more » « less
  5. We investigate gradient descent training of wide neural networks and the corresponding implicit bias in function space. For univariate regression, we show that the solution of training a width-n shallow ReLU network is within n1/2 of the function which fits the training data and whose difference from the initial function has the smallest 2-norm of the second derivative weighted by a curvature penalty that depends on the probability distribution that is used to initialize the network parameters. We compute the curvature penalty function explicitly for various common initialization procedures. For instance, asymmetric initialization with a uniform distribution yields a constant curvature penalty, and thence the solution function is the natural cubic spline interpolation of the training data. For stochastic gradient descent we obtain the same implicit bias result. We obtain a similar result for different activation functions. For multivariate regression we show an analogous result, whereby the second derivative is replaced by the Radon transform of a fractional Laplacian. For initialization schemes that yield a constant penalty function, the solutions are polyharmonic splines. Moreover, we show that the training trajectories are captured by trajectories of smoothing splines with decreasing regularization strength. 
    more » « less