skip to main content


Title: Frustrated self-assembly of non-Euclidean crystals of nanoparticles
Abstract

Self-organized complex structures in nature, e.g., viral capsids, hierarchical biopolymers, and bacterial flagella, offer efficiency, adaptability, robustness, and multi-functionality. Can we program the self-assembly of three-dimensional (3D) complex structures using simple building blocks, and reach similar or higher level of sophistication in engineered materials? Here we present an analytic theory for the self-assembly of polyhedral nanoparticles (NPs) based on their crystal structures in non-Euclidean space. We show that the unavoidable geometrical frustration of these particle shapes, combined with competing attractive and repulsive interparticle interactions, lead to controllable self-assembly of structures of complex order. Applying this theory to tetrahedral NPs, we find high-yield and enantiopure self-assembly of helicoidal ribbons, exhibiting qualitative agreement with experimental observations. We expect that this theory will offer a general framework for the self-assembly of simple polyhedral building blocks into rich complex morphologies with new material capabilities such as tunable optical activity, essential for multiple emerging technologies.

 
more » « less
Award ID(s):
1741618
NSF-PAR ID:
10286862
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The self-assembly of complex structures from a set of non-identical building blocks is a hallmark of soft matter and biological systems, including protein complexes, colloidal clusters, and DNA-based assemblies. Predicting the dependence of the equilibrium assembly yield on the concentrations and interaction energies of building blocks is highly challenging, owing to the difficulty of computing the entropic contributions to the free energy of the many structures that compete with the ground state configuration. While these calculations yield well known results for spherically symmetric building blocks, they do not hold when the building blocks have internal rotational degrees of freedom. Here we present an approach for solving this problem that works with arbitrary building blocks, including proteins with known structure and complex colloidal building blocks. Our algorithm combines classical statistical mechanics with recently developed computational tools for automatic differentiation. Automatic differentiation allows efficient evaluation of equilibrium averages over configurations that would otherwise be intractable. We demonstrate the validity of our framework by comparison to molecular dynamics simulations of simple examples, and apply it to calculate the yield curves for known protein complexes and for the assembly of colloidal shells.

     
    more » « less
  2. Abstract

    Metamolecules and crystals consisting of nanoscale building blocks offer rich models to study colloidal chemistry, materials science, and photonics. Herein we demonstrate the self‐assembly of colloidal Ag nanoparticles into quasi‐one‐dimensional metamolecules with an intriguing self‐healing ability in a linearly polarized optical field. By investigating the spatial stability of the metamolecules, we found that the origin of self‐healing is the inhomogeneous interparticle electrodynamic interactions enhanced by the formation of unusual nanoparticle dimers, which minimize the free energy of the whole structure. The equilibrium configuration and self‐healing behavior can be further tuned by modifying the electrical double layers surrounding the nanoparticles. Our results reveal a unique route to build self‐healing colloidal structures assembled from simple metal nanoparticles. This approach could potentially lead to reconfigurable plasmonic devices for photonic and sensing applications.

     
    more » « less
  3. Abstract

    Metamolecules and crystals consisting of nanoscale building blocks offer rich models to study colloidal chemistry, materials science, and photonics. Herein we demonstrate the self‐assembly of colloidal Ag nanoparticles into quasi‐one‐dimensional metamolecules with an intriguing self‐healing ability in a linearly polarized optical field. By investigating the spatial stability of the metamolecules, we found that the origin of self‐healing is the inhomogeneous interparticle electrodynamic interactions enhanced by the formation of unusual nanoparticle dimers, which minimize the free energy of the whole structure. The equilibrium configuration and self‐healing behavior can be further tuned by modifying the electrical double layers surrounding the nanoparticles. Our results reveal a unique route to build self‐healing colloidal structures assembled from simple metal nanoparticles. This approach could potentially lead to reconfigurable plasmonic devices for photonic and sensing applications.

     
    more » « less
  4. Abstract

    Self-assembly of molecular building blocks into higher-order structures is exploited in living systems to create functional complexity and represents a powerful strategy for constructing new materials. As nanoscale building blocks, proteins offer unique advantages, including monodispersity and atomically tunable interactions. Yet, control of protein self-assembly has been limited compared to inorganic or polymeric nanoparticles, which lack such attributes. Here, we report modular self-assembly of an engineered protein into four physicochemically distinct, precisely patterned 2D crystals via control of four classes of interactions spanning Ångström to several-nanometer length scales. We relate the resulting structures to the underlying free-energy landscape by combining in-situ atomic force microscopy observations of assembly with thermodynamic analyses of protein-protein and -surface interactions. Our results demonstrate rich phase behavior obtainable from a single, highly patchy protein when interactions acting over multiple length scales are exploited and predict unusual bulk-scale properties for protein-based materials that ensue from such control.

     
    more » « less
  5.  
    more » « less