skip to main content


Title: 1-Alkyl-3-Methylimidazolium Cation Binding Preferences in Hexafluorophosphate Ionic Liquid Clusters Determined Using Competitive TCID Measurements and Theoretical Calculations
Ionic liquids (ILs) exhibit unique properties that have led to their development and widespread use for a variety of applications. Development efforts have generally focused on achieving desired macroscopic properties via tuning of the IL through variation of the cations and anions. Both the macroscopic and microscopic properties of an IL influence its tunability and thus feasibility of use for selected applications. Works geared toward a microscopic understanding of the nature and strength of the intrinsic cation-anion interactions of ILs have been limited to date. Specifically, the intrinsic strength of the cation-anion interactions in ILs is largely unknown. In previous work, we employed threshold collision-induced dissociation (TCID) approaches supported and enhanced by electronic structure calculations to determine the bond dissociation energies (BDEs) and characterize the nature of the cation-anion interactions in a series of four 2:1 clusters of 1-alkyl-3-methylimidazolium cations with the hexafluorophosphate anion, [2C n mim:PF 6 ] + . To examine the effects of the 1-alkyl chain on the structure and energetics of binding, the cation was varied over the series: 1-ethyl-3-methylimidazolium, [C 2 mim] + , 1-butyl-3-methylimidazolium, [C 4 mim] + , 1-hexyl-3-methylimidazolium, [C 6 mim] + , and 1-octyl-3-methylimidazolium, [C 8 mim] + . The variation in the strength of binding among these [2C n mim:PF 6 ] + clusters was found to be similar in magnitude to the average experimental uncertainty in the measurements. To definitively establish an absolute order of binding among these [2C n mim:PF 6 ] + clusters, we extend this work again using TCID and electronic structure theory approaches to include competitive binding studies of three mixed 2:1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [C n-2 mim:PF 6 :C n mim] + for n = 4, 6, and 8. The absolute BDEs of these mixed [C n-2 mim:PF 6 :C n mim] + clusters as well as the absolute difference in the strength of the intrinsic binding interactions as a function of the cation are determined with significantly improved precision. By combining the thermochemical results of the previous independent and present competitive measurements, the BDEs of the [2C n mim:PF 6 ] + clusters are both more accurately and more precisely determined. Comparisons are made to results for the analogous [2C n mim:BF 4 ] + and [C n-2 mim:PF 6 :C n mim] + clusters previously examined to elucidate the effects of the [PF 6 ] - and [BF 4 ] - anions on the binding.  more » « less
Award ID(s):
1709789
NSF-PAR ID:
10286988
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
ISSN:
1463-9076
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Imidazolium-based cations and the hexafluorophosphate anion are among the most commonly used ionic liquids (ILs). Yet, the nature and strength of the intrinsic cation–anion interactions, and how they influence the macroscopic properties of these ILs are still not well understood. Threshold collision-induced dissociation is utilized to determine the bond dissociation energies (BDEs) of the 2 : 1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [2C n mim:PF 6 ] + . The cation, [C n mim] + , is varied across the series, 1-ethyl-3-methylimidazolium [C 2 mim] + , 1-butyl-3-methylimidazolium [C 4 mim] + , 1-hexyl-3-methylimidazolium [C 6 mim] + , 1-octyl-3-methylimidazolium [C 8 mim] + , to examine the structural and energetic effects of the size of the 1-alkyl substituent of the cation on the binding to [PF 6 ] − . Complementary electronic structure methods are employed for the [C n mim] + cations, (C n mim:PF 6 ) ion pairs, and [2C n mim:PF 6 ] + clusters to elucidate details of the cation–anion interactions and their impact on structure and energetics. Multiple levels of theory are benchmarked with the measured BDEs including B3LYP, B3LYP-GD3BJ, and M06-2X each with the 6-311+G(d,p) basis set for geometry optimizations and frequency analyses and the 6-311+G(2d,2p) basis set for energetic determinations. The modest structural variation among the [C n mim] + cations produces only minor structural changes and variation in the measured BDEs of the [2C n mim:PF 6 ] + clusters. Present results are compared to those previously reported for the analogous 1-alkyl-3-methylimidazolium tetrafluoroborate IL clusters to compare the effects of these anions on the nature and strength of the intrinsic binding interactions. 
    more » « less
  2. Ionic liquids (ILs) are gaining attention as protein stabilizers and refolding additives. However, varying degrees of success with this approach motivates the need to better understand fundamental IL-protein interactions. A combination of experiment and simulation is used to investigate the thermal unfolding of lysozyme in the presence of two imidazolium-based ILs (1-ethyl-3-methylimidazolium ethylsulfate, [EMIM][EtSO 4 ] and 1-ethyl-3-methylimidazolium diethylphosphate, [EMIM][Et 2 PO 4 ]). Both ILs reduce lysozyme melting temperature Tm , but more gradually than strong denaturants. [EMIM][Et 2 PO 4 ] lowers lysozyme Tm more readily than [EMIM][EtSO 4 ], as well as requiring less energy to unfold the protein, as determined by the calorimetric enthalpy ΔH. Intrinsic fluorescence measurements indicate that both ILs bind to tryptophan residues in a dynamic mode, and furthermore, molecular dynamics simulations show a high density of [EMIM] + near lysozyme’s Trp62 residue. For both ILs approximately half of the [EMIM] + cations near Trp62 show perfect alignment of their respective rings. The [EMIM] + cations, having a "local" effect in binding to tryptophan,likely perturb a critically important Arg-Trp-Arg bridge through favorable π − π and cation-π interactions. Simulations show that the anions, [EtSO 4 ] - and [Et 2 PO 4 ] - , interact in a "global" manner with lysozyme, due to this protein’s strong net positive charge. The anions also determine the local distribution of ions surrounding the protein. [Et 2 PO 4 ] - is found to have a closer first coordination shell around the protein and stronger Coulomb interactions with lysozyme than [EtSO 4 ] - , which could explain why the former anion is more destabilizing. Patching of ILs to the protein surface is also observed, suggesting there is no universal IL solvent for proteins, and highlighting the complexity of the IL-protein environment. 
    more » « less
  3. null (Ed.)
    Isothermal membrane-based air dehumidification (IMAD) is much more energy-efficient and economical than traditional air-dehumidification technologies. There are, however, no practical IMAD process technologies currently available mainly due to limitations of current membranes. Ionic liquids (ILs) are a promising air-dehumidification membrane material. Current supported IL membranes suffer from poor stability, limiting their performances. Herein, we propose new stable IL membranes, encapsulated IL membranes (EILMs) by encapsulating 1-butyl-3-methylimidazolium bromide ([C 4 MIM][Br]) into ultrathin polycrystalline UiO-66-NH 2 metal–organic framework membranes via a ship-in-a-bottle method. The stability of IL membranes is significantly enhanced due to the IL entrapped in the pore cages of UiO-66-NH 2 . The EILMs show unprecedentedly high H 2 O permeance (∼2.36 × 10 −4 mol m −2 s −1 Pa −1 ), an order of magnitude greater than that of the most permeable air-dehumidification membranes reported so far. Furthermore, the encapsulated [C 4 MIM][Br] drastically increases the H 2 O/N 2 separation factor to ∼1560, satisfying the minimally required H 2 O/N 2 separation performance for commercially viable air-dehumidification. 
    more » « less
  4. In the title double proton-transfer salt, C 12 H 12 N 2 2+ ·2C 8 H 7 O 4 − , consisting of a 1:2 ratio of 4,4'-(ethene-1,2-diyl)dipyridinium cations ( trans bipyridinium ethylene) to 2-hydroxy-3-methoxybenzoate anions ( o -vanillate), the complete cation is generated by crystallographic inversion symmetry and it is linked to adjacent o -vanillate anions by N—H...O hydrogen bonds, forming trimolecular assemblies. The trimers are linked by C—H...O hydrogen bonds as well as aromatic π–π stacking interactions into a three-dimensional network. The anion features an intramolecular O—H...O hydrogen bond. 
    more » « less
  5. Abstract

    Electrical conductivity (σ) of aluminum chloride (AlCl3) and 1‐butyl‐3‐methylimidazolium chloride (BMIC) ionic liquid (IL) was investigated as a function of temperature and AlCl3mole fraction ( ). Electrochemical impedance spectroscopy was used to measure the electrical conductivity. Composition of AlCl3:BMIC ionic liquid was varied by changing the from 0 to 0.67. The temperature was changed from 70°C to 110°C at 10°C intervals. It was found that the electrical conductivity increases with an increase in temperature. Electrical conductivity increases with from 0 to 0.5 and then starts to decrease after = 0.5. A species concentration profile was developed based on thermodynamic model at room temperature for the IL containing , , , , , , and at different . The only anion species presents between 0 and 0.5 are and . Anions like , , , and are found at higher . A good agreement between the model and the experimental data was obtained. The variations in anion concentration, molecular structure, and cation–anion interactions are to be the causes of the changes in electrical conductivity of AlCl3:BMIC system.

     
    more » « less