We develop an analytic approach for reflection of light at a temporal boundary inside a dispersive medium and derive frequency-dependent expressions for the reflection and transmission coefficients. Using the analytic results, we study the temporal reflection of an optical pulse and show that our results agree fully with a numerical approach used earlier. Our approach provides approximate analytic expressions for the electric fields of the reflected and transmitted pulses. Whereas the width of the transmitted pulse is modified, the reflected pulse is a mirrored version of the incident pulse. When a part of the incident spectrum lies in the region of total internal reflection, both the reflected and transmitted pulses are distorted considerably.
more »
« less
Impact of the boundary’s sharpness on temporal reflection in dispersive media
We investigate the impact of the finite rise time of a spatiotemporal boundary inside a dispersive medium used for reflection and refraction of optical pulses. We develop a matrix approach in the frequency domain for analyzing such spatiotemporal boundaries and use it to show that the frequency range over which reflection can occur is reduced as the rise time increases. We also show that total internal reflection can occur even for boundaries with long rise times. This feature suggests that spatiotemporal waveguides can be realized through cross-phase modulation even when pump pulses have relatively long rise and fall times.
more »
« less
- Award ID(s):
- 1933328
- PAR ID:
- 10287061
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 46
- Issue:
- 16
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 4053
- Size(s):
- Article No. 4053
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Attosecond pulses formed by high order harmonics (HHs) of an infrared (IR) laser field is a powerful tool for studying and controlling ultrafast dynamics of electrons in atoms, molecules and solids at its intrinsic time-scale. However, in the X-ray range the energy of attosecond pulses is rather limited. Their amplification is an important but very challenging problem since none of the existing amplifiers can support the corresponding PHz bandwidth. In our previous work [1] we proposed a method for the attosecond pulse amplification in hydrogen-like active medium of a recombination plasma-based X-ray laser dressed by a replica of the fundamental frequency IR field used for the HH generation. Due to the IRfield-induced sub-laser-cycle Stark shift and splitting of the lasing energy levels the gain of the active medium is redistributed over the combination frequencies, separated from the resonance by even multiples of the frequency of the IR field. If the incident HHs forming an attosecond pulse train are tuned in resonance with the induced gain lines and the active plasma medium is strongly dispersive for the modulating IR field, then during the amplification the relative phases of harmonics and (under the optimal choice of the IR field strength) the shape of the amplified pulses will be preserved. In the present work we show the possibility of boosting the efficiency of HH amplification by modulating the active medium of an X-ray laser with the second harmonic of the fundamental frequency IR field. We show that under the action of a laser field (with arbitrary frequency) the gain redistribution occurs not only over the even combination frequencies discussed in [1], but also over the odd frequencies separated from the resonance by odd multiples of the laser frequency. Besides, nearly half of the medium gain is contained in the even induced gain lines, and nearly half in the odd. If the modulating field is the second harmonic of the IR field, used for the generation the HHs and attosecond pulses, then the seeding HHs can be tuned in resonance with both even and odd gain lines simultaneously, which will make the overall gain much higher as compared to the previously considered case of the fundamental frequency modulating field (when only the even gain lines play the role). By the example of the C5+ X-ray laser with 3.38 nm wavelength of the inverted transition we show the possibility of increasing the efficiency of 430 as pulse amplification by 8.5 times when the active medium is modulated with the second harmonic of the fundamental frequency IR field with wavelength 2.1 µm.more » « less
-
While the frequency and structure of Atlantic basin tropical cyclone diurnal cooling and warming pulses have recently been explored, how often diurnal pulses are associated with deep convection was left unanswered. Here, storm-relative, GridSat-B1, 6-h IR brightness temperature difference fields were supplemented with World Wide Lightning Location Network (WWLLN) data to answer that question. Electrically active, long-lived cooling and warming pulses were defined objectively by determining critical thresholds for the lightning flash density, areal coverage, and longevity within each pulse. Pulses with lightning occurred 61% of the time, with persistently electrically active pulses (≥9 h, ACT) occurring on 38% of pulse days and quasi–electrically active pulses (3–6 h, QUASI) occurring on 23% of pulse days. Electrically inactive pulses (<3 h, INACT) occurred 39% of the time. ACT pulse days had more pulses located right-of-shear, the preferred quadrant for outer-rainband lightning activity, and were associated with more favorable environmental conditions than INACT pulse days. Cooling pulses were more likely to occur in lower-shear environments while warming pulses were more likely to occur in high-shear environments. Finally, while the propagation speeds of ACT and INACT cooling pulses and ACT warming pulses did lend support to the recent gravity wave and tropical squall-line explanations of diurnal pulses, the INACT warming pulses did not and should be studied further.more » « less
-
Abstract The powerful high‐frequency/very high frequency radio emissions that occur during lightning flashes can be used as a signal of opportunity to study the bottom side ionosphere. The lightning emission is bright, broad spectrum, and short in duration, providing an ideal signal of opportunity for making ionograms. This study continues previous work in Obenberger et al. (2018), where the direct line of sight signal from lightning can be cross correlated with megahertz frequency radio telescope observations to reveal ionogram traces created from the reflected lightning signals. This process was further developed to automate production of ionograms made from individual lightning flashes over the course of several hours, as well as create new techniques to detect the lightning signal using the all‐sky‐imaging mode. By using the Long Wavelength Array Sevilleta radio telescope as an interferometer, the point of reflection of the lightning signal for each frequency of the ionogram can be located in the ionosphere, instantaneously revealing density gradients within the ionosphere on minute time scales. We also explore the minimum size stations required for the application of this technique, which we found to be at least 32 antennas.more » « less
-
Motivated by previous work on kinetic energy cascades in the ocean, atmosphere, plasmas, and other fluids, we develop a spatiotemporal spectral transfer tool that can be used to study scales of variability in generalized dynamical systems. In particular, we use generalized time-frequency methods from signal analysis to broaden the applicability of frequency transfers from theoretical to practical fluids applications such as the study of observational data or simulation output. We also show that triad interactions in wavenumber used to study kinetic energy and enstrophy cascades can be generalized to study triad interactions in frequency or wavenumber frequency. We study the effects of sweeping on the locality of frequency transfers and frequency triad interactions to better understand the locality of spatiotemporal frequency transfers. As an illustrative example, we use the spatiotemporal spectral transfer tool to study the results of a simulation of two-dimensional homogeneous isotropic turbulence. This simulated fluid is forced at a well-defined wavenumber and frequency with dissipation occurring at both large and small scales, making this one of the first studies of “modulated turbulence” in two dimensions. Our results show that the spatiotemporal transfers we develop in this paper are robust to potential practical problems such as low sampling rates or nonstationarity in time series of interest. We anticipate that this method will be a useful tool in studying scales of spatiotemporal variability in a wide range of fluids applications as higher resolution observations and simulations of fluids become more widely available. Published by the American Physical Society2025more » « less
An official website of the United States government
