skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: Interfacial hydration determines orientational and functional dimorphism of sterol-derived Raman tags in lipid-coated nanoparticles
Lipid-coated noble metal nanoparticles (L-NPs) combine the biomimetic surface properties of a self-assembled lipid membrane with the plasmonic properties of a nanoparticle (NP) core. In this work, we investigate derivatives of cholesterol, which can be found in high concentrations in biological membranes, and other terpenoids, as tunable, synthetic platforms to functionalize L-NPs. Side chains of different length and polarity, with a terminal alkyne group as Raman label, are introduced into cholesterol and betulin frameworks. The synthesized tags are shown to coexist in two conformations in the lipid layer of the L-NPs, identified as “head-out” and “head-in” orientations, whose relative ratio is determined by their interactions with the lipid–water hydrogen-bonding network. The orientational dimorphism of the tags introduces orthogonal functionalities into the NP surface for selective targeting and plasmon-enhanced Raman sensing, which is utilized for the identification and Raman imaging of epidermal growth factor receptor–overexpressing cancer cells.  more » « less
Award ID(s):
1900416
PAR ID:
10287083
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
33
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2105913118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Using molecular dynamics simulations of a coarse-grained implicit solvent model, we investigate the binding of crescent-shaped nanoparticles (NPs) on tubular lipid membranes. The NPs adhere to the membrane through their concave side. We found that the binding/unbinding transition is first-order, with the threshold binding energy being higher than the unbinding threshold, and the energy barrier between the bound and unbound states at the transition that increases with increasing the NP's arclength L np or curvature mismatch μ = R c / R np , where R c and R np are the radii of curvature of the tubular membrane and the NP, respectively. Furthermore, we found that the threshold binding energy increases with increasing either L np or μ . NPs with curvature larger than that of the tubule ( μ > 1) lie perpendicularly to the tubule's axis. However, for μ smaller than a specific arclength-dependent mismatch μ *, the NPs are tilted with respect to the tubule's axis, with the tilt angle that increases with decreasing μ . We also investigated the self-assembly of the NPs on the tubule at relatively weak adhesion strength and found that for μ > 1 and high values of L np , the NPs self-assemble into linear chains, and lie side-by-side. For μ < μ * and high L np , the NPs also self-assemble into chains, while being tilted with respect to the tubule's axis. 
    more » « less
  2. The interactions of ligand-functionalized nanoparticles with the cell membrane affect cellular uptake, cytotoxicity, and related behaviors, but relating these interactions to ligand properties remains challenging. In this work, we perform coarse-grained molecular dynamics simulations to study how the adsorption of ligand-functionalized cationic gold nanoparticles (NPs) to a single-component lipid bilayer (as a model cell membrane) is influenced by ligand end group lipophilicity. A set of 2-nm diameter NPs, each coated with a monolayer of organic ligands that differ only in their end groups, was simulated to mimic NPs recently studied experimentally. Metadynamics calculations were performed to determine key features of the free energy landscape for adsorption as a function of the distance of the NP from the bilayer and the number of NP-lipid contacts. These simulations revealed that NP adsorption is thermodynamically favorable for all NPs due to the extraction of lipids from the bilayer and into the NP monolayer. To resolve ligand-dependent differences in adsorption behavior, string method calculations were performed to compute minimum free energy pathways for adsorption. These calculations revealed a surprising non-monotonic dependence of the free energy barrier for adsorption on ligand end group lipophilicity. Large free energy barriers are predicted for the least lipophilic end groups because favorable NP-lipid contacts are initiated only through the unfavorable protrusion of lipid tail groups out of the bilayer. The smallest free energy barriers are predicted for end groups of intermediate lipophilicity which promote NP-lipid contacts by intercalating within the bilayer. Unexpectedly, large free energy barriers are also predicted for the most lipophilic end groups which remain sequestered within the ligand monolayer rather than intercalating within the bilayer. These trends are broadly in agreement with past experimental measurements and reveal how subtle variations in ligand lipophilicity dictate adsorption mechanisms and associated kinetics by influencing the interplay of lipid-ligand interactions. 
    more » « less
  3. Abstract While many studies are performed on the effect of ligands on the adhesion and endocytosis of NPs, the effects of ligand length and surface density on the NPs' interaction with lipid membranes are poorly investigated. Here, a computational investigation is presented, based on molecular dynamics of a coarse‐grained implicit‐solvent model, of the interaction between ligand‐decorated spherical NPs and lipid membranes. Specifically,the case is considered where the ligands interact attractively with lipid membranes only through their ends. In particular, the effects of ligand grafting density, ligand length, and strength of ligand‐lipid interaction is investigated on the degree of wrapping of the NP by the membrane and on the morphology of the membrane close to the NP. Whereas the degree of wrapping is found to increase with increasing the grafting density for a given interaction strength and ligand length, it decreases with ligand length for a given grafting density and interaction strength. For moderate values of the adhesion strength and long ligands, it is found that the end ligands form long linear clusters, which lead to an anisotropic conformation of the membrane around the NP. For short ligands, the wrapping of the membrane around the NP is almost complete, with the wrapped NP showing a regular faceted structure for high adhesion strength. 
    more » « less
  4. Surface enhanced resonance Raman (SERS) is a powerful optical technique, which can help enhance the sensitivity of Raman spectroscopy aided by noble metal nanoparticles (NPs). However, current SERS‐NPs are often suboptimal, which can aggregate under physiological conditions with much reduced SERS enhancement. Herein, a robust one‐pot method has been developed to synthesize SERS‐NPs with more uniform core diameters of 50 nm, which is applicable to both non‐resonant and resonant Raman dyes. The resulting SERS‐NPs are colloidally stable and bright, enabling NP detection with low‐femtomolar sensitivity. An algorithm has been established, which can accurately unmix multiple types of SERS‐NPs enabling potential multiplex detection. Furthermore, a new liposome‐based approach has been developed to install a targeting carbohydrate ligand, i.e., hyaluronan, onto the SERS‐NPs bestowing significantly enhanced binding affinity to its biological receptor CD44 overexpressed on tumor cell surface. The liposomal hyaluronan (HA)‐SERS‐NPs enabled visualization of spontaneously developed breast cancer in mice in real time guiding complete surgical removal of the tumor, highlighting the translational potential of these new glyco‐SERS‐NPs. 
    more » « less
  5. Abstract A top‐down lithographic patterning and deposition process is reported for producing nanoparticles (NPs) with well‐defined sizes, shapes, and compositions that are often not accessible by wet‐chemical synthetic methods. These NPs are ligated and harvested from the substrate surface to prepare colloidal NP dispersions. Using a template‐assisted assembly technique, fabricated NPs are driven by capillary forces to assemble into size‐ and shape‐engineered templates and organize into open or close‐packed multi‐NP structures or NP metamolecules. The sizes and shapes of the NPs and of the templates control the NP number, coordination, interparticle gap size, disorder, and location of defects such as voids in the NP metamolecules. The plasmonic resonances of polygonal‐shaped Au NPs are exploited to correlate the structure and optical properties of assembled NP metamolecules. Comparing open and close‐packed architectures highlights that introduction of a center NP to form close‐packed assemblies supports collective interactions, altering magnetic optical modes and multipolar interactions in Fano resonances. Decreasing the distance between NPs strengthens the plasmonic coupling, and the structural symmetries of the NP metamolecules determine the orientation‐dependent scattering response. 
    more » « less