skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Impact of Experiment-centric Pedagogy and Home-based, Hands-on Learning Workshop at a Historically Black University
With support from the National Science Foundation, an evidence-based experimental centric pedagogy (ECP) is being implemented across STEM disciplines at an historically black university. This is the first of its kind, where the ECP is being extended to several STEM disciplines after its successful implementation in electrical engineering to promote motivation and enhance academic achievement of minority students. One of the project objectives is to organize workshops whereby STEM faculty in biology, chemistry, physics, civil engineering, computer science, industrial engineering and transportation systems will learn how to develop and implement ECP as an active learning pedagogy. This paper highlights the strategies used for planning, publicity, implementation, and assessment of the workshop conducted in Summer 2020. Due to the ongoing pandemic, the workshop was held virtually with 360 participants registering globally. The workshop’s focus was developing and implementing inexpensive home-based hands-on learning activities. Workshop assessment revealed that participants expressed positive outcomes, 84% reported that they believe the workshop was a good use of their time and 83% said they plan to implement what they had learned at the workshop in their own practice, affording the participants more opportunities to include home-based hands-on learning in their curriculum. This project seeks not only to increase public scientific literacy, but to also contribute to the development of a diverse, globally competitive STEM workforce.  more » « less
Award ID(s):
1915614
PAR ID:
10287106
Author(s) / Creator(s):
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference Content Access
Page Range / eLocation ID:
https://peer.asee.org/37228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The COVID-19 pandemic grounded the implementation of many research projects. However, with the intervention of the NSF research grant awarded to a Historically Black College and University (HBCU), with a specific goal to increase students’ achievement in multiple STEM disciplines, the pandemic challenges provided opportunities to effectively achieve the project objectives. The Adapting an Experiment-centric Teaching Approach to Increase Student Achievement in Multiple STEM Disciplines (ETA-STEM) project aims to implement an evidence-based, experiment-focused teaching approach called Experimental Centric Pedagogy (ECP) in multiple STEM disciplines. The ECP has been shown to motivate students and increase the academic success of minority students in electrical engineering in various institutions. During the Summer of 2020, the ETA-STEM Trainees engaged in research activities to develop three instruments in their respective disciplines. This paper highlights the strategic planning of the project management team, the implementation of the ECP, a comprehensive breakdown of activities and an evaluation of effectiveness of the virtual training. The 13-week intensive virtual training using Canvas learning management system and zoom virtual platform provided the opportunity to effectively interact and collaborate with project team members. Some of the summer training activities and topics included: instrumentation and measurements in STEM fields, sensors and signal conditioning, assessing the performance of instruments and sensors, effective library and literature search, introduction to education research, writing excellent scientific papers, as well as the implementation and development of ECP curriculum with focus on home-based experiment. Prior to the training, ECP kits were shipped to the team and facilitators fully utilized the virtual platform to collaborate with team members. Overall, there was a great satisfaction and confidence with the participants designing three home-based experiments using the M1K and M2K analog devices. 
    more » « less
  2. A cost-effective, secure, and portable electronic instrumentation equipment is used in Experiment Centric Pedagogy (ECP), formerly known as Mobile Hands-On Studio Technology and Pedagogy, as a teaching method for STEM subjects both inside and outside of the classroom. Since the Spring of 2020, ECP has been integrated into two Industrial Engineering (IE) courses: Thermodynamics and Materials Engineering. This has been done in various ways, including through student use at home and in-class demonstrations and teaching labs. During the most recent academic session (Fall 2021–Spring 2022), the effects of practical home-based experimentation and lab activities on students' attitudes, interests, and performance were examined for the Engineering Thermodynamics course. The outcomes of a survey known as the Motivated Strategies for Learning Questionnaires (MLSQ), which was given to 51 students, demonstrated better improvements in the student's motivation, epistemic, and perceptual curiosity, three crucial characteristics linked to their success. Along with the MLSQ, the Classroom Observation Protocol for Undergraduate Students (COPUS) assesses active learning in Industrial Engineering courses, and quantitative and qualitative data on the significant components of student achievement were gathered. Results obtained show that using ECP has improved students' awareness of material properties and increased their interest in learning about the thermodynamics concept of heat transfer in connection to various solid materials. 
    more » « less
  3. According to National Science Foundation data, African American students comprise 2% of the B.S. degree recipients in the geosciences, 2.6% in physics and 3.9% in engineering, while Blacks comprise 14.9% of the college-aged population. There is therefore an urgent need for Historical Black Colleges and Universities, which produce a large number of African American STEM graduates, to increase their focus on broadening STEM participation among underrepresented black students. Thus, there are untapped opportunities to develop intervention strategies and programs to increase recruitment, retention, and success of minorities in STEM and the workforce. The Experiment Centric Pedagogy (ECP) has been successful in promoting motivation and enhancing academic achievement of African American electrical engineering students. ECP uses a portable electronic instrumentation system, paired with appropriate software and sensors, to measure a wide range of properties, such as vibration and oxygen levels. This work in progress describes the initial adaptation of an evidence-based, experiment-focused teaching approach in biology, chemistry, civil engineering, industrial engineering, transportation systems, and physics. ECP will be utilized in these disciplines in various settings, such as in traditional classrooms, teaching laboratories, and at home use by students. Instructors use ECP for in-class demonstrations, for cooperative group experiments, and for homework assignments. The paper will highlight the criteria used for selection of initial experiments to adapt, the modifications made, and resulting changes in the course delivery. Preliminary results will be provided using measures of key constructs associated with student success, such as motivation, epistemic and perceptual curiosity, engineering identity, and self-efficacy. This project is conducted at a minority serving institution and most participants are from groups historically underrepresented in STEM. 
    more » « less
  4. The COVID-19 pandemic forced many colleges and universities to remain on a completely online or remote educational learning for more than a year; however, due to distraction, lack of motivation or engagement, and other internal/external pandemic contributing factors, learners could not pay attention 100% to the learning process. Additionally, given that transportation classes are very hands-on, students could not do the experiment from home due to limited resources available, thereby hampering all three phases of learner interactions. The limitation of the implementation of physical, hands-on laboratory exercises during the pandemic further exacerbated students’ actualization of the critical Accreditation Board for Engineering and Technology (ABET) outcomes in transportation: An ability to develop and conduct experiments or test hypotheses, analyze and interpret data and use scientific judgment to draw conclusions. Subsequently, this paper highlights the development and implementation of experiment centric pedagogy (ECP) home-based active learning experiments in three transportation courses: Introduction to Transportation Systems, Traffic Engineering, and Highway Engineering during the pandemic. Quantitative and qualitative student success key constructs data was collected in conjunction with the execution of classroom observation protocols that measure active learning in these transportation courses. The results reveal a significant difference between the pre, and post- tests of key constructs associated with student success, such as motivation, critical thinking, curiosity, collaboration, and metacognition. The results of the Classroom Observation Protocol for Undergraduate STEM (COPUS) show more active student engagement when ECP is implemented. 
    more » « less
  5. Learning critical concepts that are centered on the analysis, design, and maintenance of transportation infrastructure systems poses a measure of difficulty for undergraduates in engineering. Therefore, hands-on learning pedagogy should be an excellent precursor to increase understanding of these concepts, since the pedagogy incorporates real-life experience in the delivery. This paper describes how a hands-on learning pedagogy called experiment-centric pedagogy (ECP) has been used to teach these concepts to undergraduate students at a historically Black university. The research questions are as follows: (1) How well can ECP improve students’ understanding of concepts essential to the analysis and design of transportation infrastructure systems? (2) How has the ECP facilitated the achievement of the learning objectives of these concepts? and (3) Does an ECP increase the engagement of undergraduate students in their transportation infrastructure engineering learning and lead to measurable lasting gains? To answer these research questions, ECP was implemented and assessed when used to teach the concepts of stress and strain utilized in the analysis of bridges and other transportation infrastructure, sound used in the development and design of noise barriers, moisture content in controlling compaction of highway infrastructure systems, and degradation of infrastructure systems exposed to various environmental settings. Assessment results from 92 undergraduates reveal an increase in students’ motivation and cognitive understanding of the relevant concepts, as well as learning gains and an improved success rate compared to the traditional method of teaching. 
    more » « less