- Award ID(s):
- 1906015
- PAR ID:
- 10287164
- Editor(s):
- Hoffmann, Federico
- Date Published:
- Journal Name:
- Genome Biology and Evolution
- Volume:
- 13
- Issue:
- 8
- ISSN:
- 1759-6653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Macqueen, D (Ed.)Abstract While the cost and time for assembling a genome has drastically decreased, it still remains a challenge to assemble a highly contiguous genome. These challenges are rapidly being overcome by the integration of long-read sequencing technologies. Here, we use long-read sequencing to improve the contiguity of the threespine stickleback fish (Gasterosteus aculeatus) genome, a prominent genetic model species. Using Pacific Biosciences sequencing, we assembled a highly contiguous genome of a freshwater fish from Paxton Lake. Using contigs from this genome, we were able to fill over 76.7% of the gaps in the existing reference genome assembly, improving contiguity over fivefold. Our gap filling approach was highly accurate, validated by 10X Genomics long-distance linked-reads. In addition to closing a majority of gaps, we were able to assemble segments of telomeres and centromeres throughout the genome. This highlights the power of using long sequencing reads to assemble highly repetitive and difficult to assemble regions of genomes. This latest genome build has been released through a newly designed community genome browser that aims to consolidate the growing number of genomics datasets available for the threespine stickleback fish.more » « less
-
In less than 25 y, the field of animal genome science has transformed from a discipline seeking its first glimpses into genome sequences across the Tree of Life to a global enterprise with ambitions to sequence genomes for all of Earth’s eukaryotic diversity [H. A. Lewin et al. , Proc. Natl. Acad. Sci. U.S.A. 115, 4325–4333 (2018)]. As the field rapidly moves forward, it is important to take stock of the progress that has been made to best inform the discipline’s future. In this Perspective, we provide a contemporary, quantitative overview of animal genome sequencing. We identified the best available genome assemblies in GenBank, the world’s most extensive genetic database, for 3,278 unique animal species across 24 phyla. We assessed taxonomic representation, assembly quality, and annotation status for major clades. We show that while tremendous taxonomic progress has occurred, stark disparities in genomic representation exist, highlighted by a systemic overrepresentation of vertebrates and underrepresentation of arthropods. In terms of assembly quality, long-read sequencing has dramatically improved contiguity, whereas gene annotations are available for just 34.3% of taxa. Furthermore, we show that animal genome science has diversified in recent years with an ever-expanding pool of researchers participating. However, the field still appears to be dominated by institutions in the Global North, which have been listed as the submitting institution for 77% of all assemblies. We conclude by offering recommendations for improving genomic resource availability and research value while also broadening global representation.more » « less
-
Abstract For any genome-based research, a robust genome assembly is required. De novo assembly strategies have evolved with changes in DNA sequencing technologies and have been through at least three phases: i) short-read only, ii) short- and long-read hybrid, and iii) long-read only assemblies. Each of the phases has their own error model. We hypothesized that hidden scaffolding errors in short-read assembly and erroneous long-read contigs degrades the quality of short- and long-read hybrid assemblies. We assembled the genome of T. borchgrevinki from data generated during each of the three phases and assessed the quality problems we encountered. We developed strategies such as k-mer-assembled region replacement, parameter optimization, and long-read sampling to address the error models. We demonstrated that a k-mer based strategy improved short-read assemblies as measured by BUSCO while mate-pair libraries introduced hidden scaffolding errors and perturbed BUSCO scores. Further, we found that although hybrid assemblies can generate higher contiguity they tend to suffer from lower quality. In addition, we found long-read only assemblies can be optimized for contiguity by sub-sampling length-restricted raw reads. Our results indicate that long-read contig assembly is the current best choice and that assemblies from phase I and phase II were of lower quality.more » « less
-
Abstract The emergence of third‐generation sequencing (3GS; long‐reads) is bringing closer the goal of chromosome‐size fragments in de novo genome assemblies. This allows the exploration of new and broader questions on genome evolution for a number of nonmodel organisms. However, long‐read technologies result in higher sequencing error rates and therefore impose an elevated cost of sufficient coverage to achieve high enough quality. In this context, hybrid assemblies, combining short‐reads and long‐reads, provide an alternative efficient and cost‐effective approach to generate de novo, chromosome‐level genome assemblies. The array of available software programs for hybrid genome assembly, sequence correction and manipulation are constantly being expanded and improved. This makes it difficult for nonexperts to find efficient, fast and tractable computational solutions for genome assembly, especially in the case of nonmodel organisms lacking a reference genome or one from a closely related species. In this study, we review and test the most recent pipelines for hybrid assemblies, comparing the model organism
Drosophila melanogaster to a nonmodel cactophilicDrosophila ,D. mojavensis . We show that it is possible to achieve excellent contiguity on this nonmodel organism using thedbg2olc pipeline. -
Abstract Background Ambitious initiatives to coordinate genome sequencing of Earth's biodiversity mean that the accumulation of genomic data is growing rapidly. In addition to cataloguing biodiversity, these data provide the basis for understanding biological function and evolution. Accurate and complete genome assemblies offer a comprehensive and reliable foundation upon which to advance our understanding of organismal biology at genetic, species, and ecosystem levels. However, ever-changing sequencing technologies and analysis methods mean that available data are often heterogeneous in quality. To guide forthcoming genome generation efforts and promote efficient prioritization of resources, it is thus essential to define and monitor taxonomic coverage and quality of the data.
Findings Here we present an automated analysis workflow that surveys genome assemblies from the United States NCBI, assesses their completeness using the relevant BUSCO datasets, and collates the results into an interactively browsable resource. We apply our workflow to produce a community resource of available assemblies from the phylum Arthropoda, the Arthropoda Assembly Assessment Catalogue. Using this resource, we survey current taxonomic coverage and assembly quality at the NCBI, examine how key assembly metrics relate to gene content completeness, and compare results from using different BUSCO lineage datasets.
Conclusions These results demonstrate how the workflow can be used to build a community resource that enables large-scale assessments to survey species coverage and data quality of available genome assemblies, and to guide prioritizations for ongoing and future sampling, sequencing, and genome generation initiatives.