skip to main content


Title: Toward a genome sequence for every animal: Where are we now?
In less than 25 y, the field of animal genome science has transformed from a discipline seeking its first glimpses into genome sequences across the Tree of Life to a global enterprise with ambitions to sequence genomes for all of Earth’s eukaryotic diversity [H. A. Lewin et al. , Proc. Natl. Acad. Sci. U.S.A. 115, 4325–4333 (2018)]. As the field rapidly moves forward, it is important to take stock of the progress that has been made to best inform the discipline’s future. In this Perspective, we provide a contemporary, quantitative overview of animal genome sequencing. We identified the best available genome assemblies in GenBank, the world’s most extensive genetic database, for 3,278 unique animal species across 24 phyla. We assessed taxonomic representation, assembly quality, and annotation status for major clades. We show that while tremendous taxonomic progress has occurred, stark disparities in genomic representation exist, highlighted by a systemic overrepresentation of vertebrates and underrepresentation of arthropods. In terms of assembly quality, long-read sequencing has dramatically improved contiguity, whereas gene annotations are available for just 34.3% of taxa. Furthermore, we show that animal genome science has diversified in recent years with an ever-expanding pool of researchers participating. However, the field still appears to be dominated by institutions in the Global North, which have been listed as the submitting institution for 77% of all assemblies. We conclude by offering recommendations for improving genomic resource availability and research value while also broadening global representation.  more » « less
Award ID(s):
1906015
NSF-PAR ID:
10342498
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
52
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The field of plant genome sequencing has grown rapidly in the past 20 years, leading to increases in the quantity and quality of publicly available genomic resources. The growing wealth of genomic data from an increasingly diverse set of taxa provides unprecedented potential to better understand the genome biology and evolution of land plants. Here we provide a contemporary view of land plant genomics, including analyses on assembly quality, taxonomic distribution of sequenced species and national participation. We show that assembly quality has increased dramatically in recent years, that substantial taxonomic gaps exist and that the field has been dominated by affluent nations in the Global North and China, despite a wide geographic distribution of study species. We identify numerous disconnects between the native range of focal species and the national affiliation of the researchers studying them, which we argue are rooted in colonialism—both past and present. Luckily, falling sequencing costs, widening availability of analytical tools and an increasingly connected scientific community provide key opportunities to improve existing assemblies, fill sampling gaps and empower a more global plant genomics community.

     
    more » « less
  2. Hoffmann, Federico (Ed.)
    Abstract The first insect genome assembly (Drosophila melanogaster) was published two decades ago. Today, nuclear genome assemblies are available for a staggering 601 insect species representing 20 orders. In this study, we analyzed the most-contiguous assembly for each species and provide a “state-of-the-field” perspective, emphasizing taxonomic representation, assembly quality, gene completeness, and sequencing technologies. Relative to species richness, genomic efforts have been biased toward four orders (Diptera, Hymenoptera, Collembola, and Phasmatodea), Coleoptera are underrepresented, and 11 orders still lack a publicly available genome assembly. The average insect genome assembly is 439.2 Mb in length with 87.5% of single-copy benchmarking genes intact. Most notable has been the impact of long-read sequencing; assemblies that incorporate long reads are ∼48× more contiguous than those that do not. We offer four recommendations as we collectively continue building insect genome resources: 1) seek better integration between independent research groups and consortia, 2) balance future sampling between filling taxonomic gaps and generating data for targeted questions, 3) take advantage of long-read sequencing technologies, and 4) expand and improve gene annotations. 
    more » « less
  3. null (Ed.)
    Choosing the optimum assembly approach is essential to achieving a high-quality genome assembly suitable for comparative and evolutionary genomic investigations. Significant recent progress in long-read sequencing technologies such as PacBio and Oxford Nanopore Technologies (ONT) has also brought about a large variety of assemblers. Although these have been extensively tested on model species such as Homo sapiens and Drosophila melanogaster , such benchmarking has not been done in Mollusca, which lacks widely adopted model species. Molluscan genomes are notoriously rich in repeats and are often highly heterozygous, making their assembly challenging. Here, we benchmarked 10 assemblers based on ONT raw reads from two published molluscan genomes of differing properties, the gastropod Chrysomallon squamiferum (356.6 Mb, 1.59% heterozygosity) and the bivalve Mytilus coruscus (1593 Mb, 1.94% heterozygosity). By optimizing the assembly pipeline, we greatly improved both genomes from previously published versions. Our results suggested that 40–50X of ONT reads are sufficient for high-quality genomes, with Flye being the recommended assembler for compact and less heterozygous genomes exemplified by C. squamiferum , while NextDenovo excelled for more repetitive and heterozygous molluscan genomes exemplified by M. coruscus . A phylogenomic analysis using the two updated genomes with 32 other published high-quality lophotrochozoan genomes resulted in maximum support across all nodes, and we show that improved genome quality also leads to more complete matrices for phylogenomic inferences. Our benchmarking will ensure efficiency in future assemblies for molluscs and perhaps also for other marine phyla with few genomes available. This article is part of the Theo Murphy meeting issue ‘Molluscan genomics: broad insights and future directions for a neglected phylum’. 
    more » « less
  4. Blackmon, Heath (Ed.)
    Abstract In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the “genomics age” was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012 and 2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa. 
    more » « less
  5. Abstract

    Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families. Using the latest advances in genome sequencing and assembly methods, we generated one of the highest-quality squamate genomes to date for the leopard gecko, Eublepharis macularius (Eublepharidae). We compared this assembly to the previous, short-read only, E. macularius reference genome published in 2016 and examined potential factors within the assembly influencing contiguity of genome assemblies using PacBio HiFi data. Briefly, the read N50 of the PacBio HiFi reads generated for this study was equal to the contig N50 of the previous E. macularius reference genome at 20.4 kilobases. The HiFi reads were assembled into a total of 132 contigs, which was further scaffolded using HiC data into 75 total sequences representing all 19 chromosomes. We identified 9 of the 19 chromosomal scaffolds were assembled as a near-single contig, whereas the other 10 chromosomes were each scaffolded together from multiple contigs. We qualitatively identified that the percent repeat content within a chromosome broadly affects its assembly contiguity prior to scaffolding. This genome assembly signifies a new age for squamate genomics where high-quality reference genomes rivaling some of the best vertebrate genome assemblies can be generated for a fraction of previous cost estimates. This new E. macularius reference assembly is available on NCBI at JAOPLA010000000.

     
    more » « less