skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Accessible Computing Curriculum for Students with Autism Spectrum Disorders
CT as an essential 21st-century skill and knowledge will be instrumental to new discovery and innovation in all fields of endeavor, and therefore, computing should be taught to all students alongside reading, writing, and arithmetic. However, no computing curriculum has been designed and developed for students with Autism Spectrum Disorders. The objective of this study is to identify and report adaptations and accommodations needed to make an existing computational thinking (CT) curriculum accessible to students with ASD. This objective is accomplished by analyzing sixth-grade students’ characteristics at a school for students with ASD and developing the adaptations and accommodations. The data analyzed and reported for this study consists of systematic documentation of the adaptations and accommodations, including learning objectives, instructional design, information presentation, assessments, feedback, and learning environment.  more » « less
Award ID(s):
2031427
PAR ID:
10287235
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of Society for Information Technology & Teacher Education International Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Langran, E. (Ed.)
    There has been a limited number of studies in which a computing curriculum is designed and developed for students with Autism Spectrum Disorders (ASD), and there has been no study to test the effectiveness of an accessible computing curriculum for students with ASD. Therefore, the objectives of this study are 1) to implement an accessible computing curriculum at an inner-city school for seventh-grade students with ASD, and 2) evaluate the effectiveness of the accessible curriculum in improving students with ASDs’ learning of computational thinking concepts (CTCs) (sequences, loops, parallelism, conditionals, operators, and data) and their development of fluency in computational thinking practices (CTPs) (experimenting, iterating, testing, debugging, reusing and remixing, abstracting, and modularizing) by comparing two groups of twenty-two students; one group taught utilizing the adjusted curriculum and the other utilizing the original curriculum. Students' CTCs were measured by analyzing both groups' pretest and posttest scores, and their CTPs were measured by their artifact-based interview scores. 
    more » « less
  2. The purpose of this research was to study the experiences of middle-school teachers of autistic students during the co-design of neurodiverse pedagogies for computational thinking (CT) within the context of a research practitioner partnership (RPP). This knowledge building partnership was founded on the neurodiversity paradigm and challenges the assumption that individuals with disabilities are exceptions for which accommodations must be made. Neurodiversity, here, is viewed as the natural variation of neurological differences and as such is proposed to be the baseline in every educational setting (Silberman, 2016; Walker, n.d.). When neurodiversity is seen as a baseline for an educational community, the focus is on educating diverse (whole) individuals rather than planning and teaching a standard computational thinking curriculum, while adding accommodations or adaptations to meet the needs of individual students. Our paper presents the results from a critical event analysis using qualitative data collected during the first year of a three-year mixed methods study, which includes teacher workshop mini-interviews and teacher embodied interviews. In this study, we ask: How do teachers experience the co-designing of neurodiverse pedagogies for computational thinking in a research practitioner partnership? And, how do these teachers modify and diversify their teaching practices of CT? 
    more » « less
  3. As many school districts nationwide continue to incorporate Computer Science (CS) and Computational Thinking (CT) instruction at the K-8 level, it is crucial that we understand the factors and skills, such as reading and math proficiency, that contribute to the success of younger learners in a computing curriculum and are typically developed at this age. Yet, little is known about the relationship between reading and math proficiency, and the learning of key CS concepts at the elementary level. This study focused on 4th-grade students (ages 9-10) who were taught events, sequence, and repetition through an adaptation of the Creative Computing Curriculum. While all students benefited from access to such a curriculum, there were statistically-significant differences in learning outcomes, especially between students whose reading and math proficiency are below grade-level, and students whose proficiency are at or above grade-level. This performance gap suggests the need for curricular improvement and learning strategies that are CS specific for students who struggle with reading and math. 
    more » « less
  4. Gresalfi, M.; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration. 
    more » « less
  5. Gresalfi, M.; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration. 
    more » « less