Abstract Nitric oxide (NO) is a ubiquitous gaseous messenger, but we know little about its early evolution. Here, we analyzed NO synthases (NOS) in four different species of placozoans—one of the early-branching animal lineages. In contrast to other invertebrates studied,TrichoplaxandHoilungiahave three distinct NOS genes, including PDZ domain-containing NOS. Using ultra-sensitive capillary electrophoresis assays, we quantified nitrites (products of NO oxidation) andl-citrulline (co-product of NO synthesis froml-arginine), which were affected by NOS inhibitors confirming the presence of functional enzymes inTrichoplax. Using fluorescent single-molecule in situ hybridization, we showed that distinct NOSs are expressed in different subpopulations of cells, with a noticeable distribution close to the edge regions ofTrichoplax. These data suggest both the compartmentalized release of NO and a greater diversity of cell types in placozoans than anticipated. NO receptor machinery includes both canonical and novel NIT-domain containing soluble guanylate cyclases as putative NO/nitrite/nitrate sensors. Thus, althoughTrichoplaxandHoilungiaexemplify the morphologically simplest free-living animals, the complexity of NO-cGMP-mediated signaling in Placozoa is greater to those in vertebrates. This situation illuminates multiple lineage-specific diversifications of NOSs and NO/nitrite/nitrate sensors from the common ancestor of Metazoa and the preservation of conservative NOS architecture from prokaryotic ancestors.
more »
« less
Hidden cell diversity in Placozoa: ultrastructural insights from Hoilungia hongkongensis
From a morphological point of view, placozoans are among the most simple free-living animals. This enigmatic phylum is critical for our understanding of the evolution of animals and their cell types. Their millimeter-sized, disc-like bodies consist of only three cell layers that are shaped by roughly seven major cell types. Placozoans lack muscle cells and neurons but are able to move using their ciliated lower surface and take up food in a highly coordinated manner. Intriguingly, the genome of Trichoplax adhaerens, the founding member of the enigmatic phylum, has disclosed a surprising level of genetic complexity. Moreover, recent molecular and functional investigations have uncovered a much larger, so-far hidden cell-type diversity. Here, we have extended the microanatomical characterization of a recently described placozoan species—Hoilungia hongkongensis. In H. hongkongensis, we recognized the established canonical three-layered placozoan body plan but also came across several morphologically distinct and potentially novel cell types, among them novel gland cells and “shiny spheres”- bearing cells at the upper epithelium. Thus, the diversity of cell types in placozoans is indeed higher than anticipated
more »
« less
- Award ID(s):
- 1645219
- PAR ID:
- 10287243
- Date Published:
- Journal Name:
- Cell and Tissue Research
- ISSN:
- 0302-766X
- Page Range / eLocation ID:
- 1-15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Placozoans are essential reference species for understanding the origins and evolution of the animal organization. However, little is known about their life strategies in natural habitats. Here, by establishing long-term culturing for four species of Trichoplax and Hoilungia, we extend our knowledge about feeding and reproductive adaptations relevant to their ecology and immune mechanisms. Three modes of population growth depended upon feeding sources, including induction of social behaviors and different reproductive strategies. In addition to fission, representatives of all haplotypes produced ‘swarmers,’ which could be formed from the lower epithelium (with greater cell- type diversity) as a separate asexual reproduction stage. In aging culture, we reported the formation of specialized structures (‘spheres’) from the upper cell layer as a part of the innate immune defense response with the involvement of fiber cells. Finally, we showed that regeneration could be a part of the adaptive reproductive strategies in placozoans and a unique model for regenerative biology in general.more » « less
-
Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.more » « less
-
Hydractiniais a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of twoHydractiniaspecies,Hydractinia symbiolongicarpusandHydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult maleH. symbiolongicarpusand identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed thatHydractinia’s i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given thatHydractiniahas a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate thatHydractinia’s stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources forHydractiniapresented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.more » « less
-
Abstract Many annelids can regenerate missing body parts or reproduce asexually, generating all cell types in adult stages. However, the putative adult stem cell populations involved in these processes, and the diversity of cell types generated by them, are still unknown. To address this, we recover 75,218 single cell transcriptomes of the highly regenerative and asexually-reproducing annelidPristina leidyi. Our results uncover a rich cell type diversity including annelid specific types as well as novel types. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such asvasa,piwiandnanoshomologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. We find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors, inpiwi+cells. Finally, lineage reconstruction analyses reveal computational differentiation trajectories frompiwi+cells to diverse adult types. Our data reveal the cell type diversity of adult annelids by single cell transcriptomics and suggest that apiwi+ cell population with a pluripotent stem cell signature is associated with adult cell type differentiation.more » « less
An official website of the United States government

