skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The genome of the colonial hydroid Hydractinia reveals their stem cells use a toolkit of genes shared with all animals
Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.  more » « less
Award ID(s):
1923259
PAR ID:
10447519
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
bioRxiv
ISSN:
2692-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydractiniais a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of twoHydractiniaspecies,Hydractinia symbiolongicarpusandHydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult maleH. symbiolongicarpusand identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed thatHydractinia’s i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given thatHydractiniahas a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate thatHydractinia’s stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources forHydractiniapresented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself. 
    more » « less
  2. Abstract Adult pluripotent stem cells are found in diverse animals, including cnidarians, acoels, and planarians, and confer remarkable abilities such as whole-body regeneration. The mechanisms by which these pluripotent stem cells orchestrate the replacement of all lost cell types, however, remains poorly understood. Underlying heterogeneity within the stem cell populations of these animals is often obscured when focusing on certain tissue types or life history stages, which tend to have indistinguishable spatial expression patterns of stem cell marker genes. Here, we focus on the adult pluripotent stem cells (i-cells) ofHydractinia symbiolongicarpus, a colonial marine cnidarian with distinct polyp types and stolonal tissue. Recently, a single-cell expression atlas was generated forH. symbiolongicarpuswhich revealed two distinct clusters with i-cell signatures, potentially representing heterogeneity within this species’ stem cell population. Considering this finding, we investigated eight new putative stem cell marker genes from the atlas including five expressed in both i-cell clusters (Pcna,Nop58,Mcm4,Ubr7, andUhrf1) and three expressed in one cluster or the other (Pter, FoxQ2-like,andZcwpw1). We characterized their expression patterns in various contexts–feeding and sexual polyps, juvenile feeding polyps, stolon, and during feeding polyp head regeneration–revealing context-dependent gene expression patterns and a transcriptionally dynamic i-cell population. We uncover previously unknown differences within the i-cell population ofHydractiniaand demonstrate that its colonial nature serves as an excellent system for investigating and visualizing heterogeneity in pluripotent stem cells. 
    more » « less
  3. Nucleostemin ( NS ) is a vertebrate gene preferentially expressed in stem and cancer cells, which acts to regulate cell cycle progression, genome stability and ribosome biogenesis. NS and its paralogous gene, GNL3-like ( GNL3L ), arose in the vertebrate clade after a duplication event from their orthologous gene, G protein Nucleolar 3 ( GNL3 ). Research on invertebrate GNL3 , however, has been limited. To gain a greater understanding of the evolution and functions of the GNL3 gene, we have performed studies in the hydrozoan cnidarian Hydractinia symbiolongicarpus , a colonial hydroid that continuously generates pluripotent stem cells throughout its life cycle and presents impressive regenerative abilities. We show that Hydractinia GNL3 is expressed in stem and germline cells. The knockdown of GNL3 reduces the number of mitotic and S-phase cells in Hydractinia larvae of different ages. Genome editing of Hydractinia GNL3 via CRISPR/Cas9 resulted in colonies with reduced growth rates, polyps with impaired regeneration capabilities, gonadal morphological defects, and low sperm motility. Collectively, our study shows that GNL3 is an evolutionarily conserved stem cell and germline gene involved in cell proliferation, animal growth, regeneration and sexual reproduction in Hydractinia , and sheds new light into the evolution of GNL3 and of stem cell systems. 
    more » « less
  4. Most colonial marine invertebrates are capable of allorecognition, the ability to distinguish between themselves and conspecifics. One long-standing question is whether invertebrate allorecognition genes are homologous to vertebrate histocompatibility genes. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two genes, Allorecognition 1 ( Alr1 ) and Allorecognition 2 ( Alr2 ), which encode highly polymorphic cell-surface proteins that serve as markers of self. Here, we show that Alr1 and Alr2 are part of a family of 41 Alr genes, all of which reside in a single genomic interval called the Allorecognition Complex (ARC). Using sensitive homology searches and highly accurate structural predictions, we demonstrate that the Alr proteins are members of the immunoglobulin superfamily (IgSF) with V-set and I-set Ig domains unlike any previously identified in animals. Specifically, their primary amino acid sequences lack many of the motifs considered diagnostic for V-set and I-set domains, yet they adopt secondary and tertiary structures nearly identical to canonical Ig domains. Thus, the V-set domain, which played a central role in the evolution of vertebrate adaptive immunity, was present in the last common ancestor of cnidarians and bilaterians. Unexpectedly, several Alr proteins also have immunoreceptor tyrosine-based activation motifs and immunoreceptor tyrosine-based inhibitory motifs in their cytoplasmic tails, suggesting they could participate in pathways homologous to those that regulate immunity in humans and flies. This work expands our definition of the IgSF with the addition of a family of unusual members, several of which play a role in invertebrate histocompatibility. 
    more » « less
  5. Summary Pluripotency, the ability of cells to self-renew and differentiate into all the cell types in an animal’s body, is vital for mammalian early development. This study presented a comprehensive comparative transcriptomic analysis of embryonic stem cells across multiple mammalian species, defining their progression through expanded/extended, naïve, formative, and primed pluripotency states. Our findings revealed both conserved and species-specific mechanisms underlying pluripotency regulation. We also emphasized the limitations of existing state-specific markers and their limited cross-species applicability, while identifyingde novopluripotency markers that can inform future research. Despite variability in gene expression dynamics, gene co-expression networks showed remarkable conservation across species. Among pluripotency states, the primed state demonstrated the highest conservation, evidenced by shared markers, preserved gene networks, and stronger selective pressures acting on its genes. These findings provide critical insights into the evolution and regulation of pluripotency, laying a foundation for refining stem cell models to enhance their translational potential in regenerative medicine, agriculture, and conservation biology. 
    more » « less