Modern attacks against enterprises often have multiple targets inside the enterprise network. Due to the large size of these networks and increasingly stealthy attacks, attacker activities spanning multiple hosts are extremely difficult to correlate during a threat-hunting effort. In this paper, we present a method for an efficient cross-host attack correlation across multiple hosts. Unlike previous works, our approach does not require lateral movement detection techniques or host-level modifications. Instead, our approach relies on an observation that attackers have a few strategic mission objectives on every host that they infiltrate, and there exist only a handful of techniques for achieving those objectives. The central idea behind our approach involves comparing (OS agnostic) activities on different hosts and correlating the hosts that display the use of similar tactics, techniques, and procedures. We implement our approach in a tool called Ostinato and successfully evaluate it in threat hunting scenarios involving DARPA-led red team engagements spanning 500 hosts and in another multi-host attack scenario. Ostinato successfully detected 21 additional compromised hosts, which the underlying host-based detection system overlooked in activities spanning multiple days of the attack campaign. Additionally, Ostinato successfully reduced alarms generated from the underlying detection system by more than 90%, thus helping to mitigate the threat alert fatigue problem. 
                        more » 
                        « less   
                    
                            
                            Hopper: Modeling and Detecting Lateral Movement
                        
                    
    
            In successful enterprise attacks, adversaries often need to gain access to additional machines beyond their initial point of compromise, a set of internal movements known as lateral movement. We present Hopper, a system for detecting lateral movement based on commonly available enterprise logs. Hopper constructs a graph of login activity among internal machines and then identifies suspicious sequences of logins that correspond to lateral movement. To understand the larger context of each login, Hopper employs an inference algorithm to identify the broader path(s) of movement that each login belongs to and the causal user responsible for performing a path's logins. Hopper then leverages this path inference algorithm, in conjunction with a set of detection rules and a new anomaly scoring algorithm, to surface the login paths most likely to reflect lateral movement. On a 15-month enterprise dataset consisting of over 780 million internal logins, Hopper achieves a 94.5% detection rate across over 300 realistic attack scenarios, including one red team attack, while generating an average of < 9 alerts per day. In contrast, to detect the same number of attacks, prior state-of-the-art systems would need to generate nearly 8× as many false positives. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1705050
- PAR ID:
- 10287362
- Date Published:
- Journal Name:
- USENIX Security Symposium
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Remote password guessing attacks remain one of the largest sources of account compromise. Understanding and characterizing attacker strategies is critical to improving security but doing so has been challenging thus far due to the sensitivity of login services and the lack of ground truth labels for benign and malicious login requests. We perform an in-depth measurement study of guessing attacks targeting two large universities. Using a rich dataset of more than 34 million login requests to the two universities as well as thousands of compromise reports, we were able to develop a new analysis pipeline to identify 29 attack clusters—many of which involved compromises not previously known to security engineers. Our analysis provides the richest investigation to date of password guessing attacks as seen from login services. We believe our tooling will be useful in future efforts to develop real-time detection of attack campaigns, and our characterization of attack campaigns can help more broadly guide mitigation design.more » « less
- 
            null (Ed.)In many network applications, it may be desirable to conceal certain target nodes from detection by a data collector, who is using a crawling algorithm to explore a network. For example, in a computer network, the network administrator may wish to protect those computers (target nodes) with sensitive information from discovery by a hacker who has exploited vulnerable machines and entered the network. These networks are often protected by hiding the machines (nodes) from external access, and allow only fixed entry points into the system (protection against external attacks). However, in this protection scheme, once one of the entry points is breached, the safety of all internal machines is jeopardized (i.e., the external attack turns into an internal attack). In this paper, we view this problem from the perspective of the data protector. We propose the Node Protection Problem: given a network with known entry points, which edges should be removed/added so as to protect as many target nodes from the data collector as possible? A trivial way to solve this problem would be to simply disconnect either the entry points or the target nodes – but that would make the network non-functional. Accordingly, we impose certain constraints: for each node, only (1 − r) fraction of its edges can be removed, and the resulting network must not be disconnected. We propose two novel scoring mechanisms - the Frequent Path Score and the Shortest Path Score. Using these scores, we propose NetProtect, an algorithm that selects edges to be removed or added so as to best impede the progress of the data collector. We show experimentally that NetProtect outperforms baseline node protection algorithms across several real-world networks. In some datasets, With 1% of the edges removed by NetProtect, we found that the data collector requires up to 6 (4) times the budget compared to the next best baseline in order to discover 5 (50) nodes.more » « less
- 
            We present the first large-scale characterization of lateral phishing attacks, based on a dataset of 113 million employee-sent emails from 92 enterprise organizations. In a lateral phishing attack, adversaries leverage a compromised enterprise account to send phishing emails to other users, benefitting from both the implicit trust and the information in the hijacked user's account. We develop a classifier that finds hundreds of real-world lateral phishing emails, while generating under four false positives per every one-million employeesent emails. Drawing on the attacks we detect, as well as a corpus of user-reported incidents, we quantify the scale of lateral phishing, identify several thematic content and recipient targeting strategies that attackers follow, illuminate two types of sophisticated behaviors that attackers exhibit, and estimate the success rate of these attacks. Collectively, these results expand our mental models of the `enterprise attacker' and shed light on the current state of enterprise phishing attacksmore » « less
- 
            Large enterprises are increasingly relying on threat detection softwares (e.g., Intrusion Detection Systems) to allow them to spot suspicious activities. These softwares generate alerts which must be investigated by cyber analysts to figure out if they are true attacks. Unfortunately, in practice, there are more alerts than cyber analysts can properly investigate. This leads to a “threat alert fatigue” or information overload problem where cyber analysts miss true attack alerts in the noise of false alarms. In this paper, we present NoDoze to combat this challenge using contextual and historical information of generated threat alert in an enterprise. NoDoze first generates a causal dependency graph of an alert event. Then, it assigns an anomaly score to each event in the dependency graph based on the frequency with which related events have happened before in the enterprise. NoDoze then propagates those scores along the edges of the graph using a novel network diffusion algorithm and generates a subgraph with an aggregate anomaly score which is used to triage alerts. Evaluation on our dataset of 364 threat alerts shows that NoDoze decreases the volume of false alarms by 86%, saving more than 90 hours of analysts’ time, which was required to investigate those false alarms. Furthermore, NoDoze generated dependency graphs of true alerts are 2 orders of magnitude smaller than those generated by traditional tools without sacrificing the vital information needed for the investigation. Our system has a low average runtime overhead and can be deployed with any threat detection software.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    