skip to main content

Title: Hopper: Modeling and Detecting Lateral Movement
In successful enterprise attacks, adversaries often need to gain access to additional machines beyond their initial point of compromise, a set of internal movements known as lateral movement. We present Hopper, a system for detecting lateral movement based on commonly available enterprise logs. Hopper constructs a graph of login activity among internal machines and then identifies suspicious sequences of logins that correspond to lateral movement. To understand the larger context of each login, Hopper employs an inference algorithm to identify the broader path(s) of movement that each login belongs to and the causal user responsible for performing a path's logins. Hopper then leverages this path inference algorithm, in conjunction with a set of detection rules and a new anomaly scoring algorithm, to surface the login paths most likely to reflect lateral movement. On a 15-month enterprise dataset consisting of over 780 million internal logins, Hopper achieves a 94.5% detection rate across over 300 realistic attack scenarios, including one red team attack, while generating an average of < 9 alerts per day. In contrast, to detect the same number of attacks, prior state-of-the-art systems would need to generate nearly 8× as many false positives.
Authors:
; ; ; ; ; ;
Award ID(s):
1705050
Publication Date:
NSF-PAR ID:
10287362
Journal Name:
USENIX Security Symposium
Sponsoring Org:
National Science Foundation
More Like this
  1. In many network applications, it may be desirable to conceal certain target nodes from detection by a data collector, who is using a crawling algorithm to explore a network. For example, in a computer network, the network administrator may wish to protect those computers (target nodes) with sensitive information from discovery by a hacker who has exploited vulnerable machines and entered the network. These networks are often protected by hiding the machines (nodes) from external access, and allow only fixed entry points into the system (protection against external attacks). However, in this protection scheme, once one of the entry points is breached, the safety of all internal machines is jeopardized (i.e., the external attack turns into an internal attack). In this paper, we view this problem from the perspective of the data protector. We propose the Node Protection Problem: given a network with known entry points, which edges should be removed/added so as to protect as many target nodes from the data collector as possible? A trivial way to solve this problem would be to simply disconnect either the entry points or the target nodes – but that would make the network non-functional. Accordingly, we impose certain constraints: for eachmore »node, only (1 − r) fraction of its edges can be removed, and the resulting network must not be disconnected. We propose two novel scoring mechanisms - the Frequent Path Score and the Shortest Path Score. Using these scores, we propose NetProtect, an algorithm that selects edges to be removed or added so as to best impede the progress of the data collector. We show experimentally that NetProtect outperforms baseline node protection algorithms across several real-world networks. In some datasets, With 1% of the edges removed by NetProtect, we found that the data collector requires up to 6 (4) times the budget compared to the next best baseline in order to discover 5 (50) nodes.« less
  2. Mobile devices typically rely on entry-point and other one-time authentication mechanisms such as a password, PIN, fingerprint, iris, or face. But these authentication types are prone to a wide attack vector and worse 1 INTRODUCTION Currently smartphones are predominantly protected a patterned password is prone to smudge attacks, and fingerprint scanning is prone to spoof attacks. Other forms of attacks include video capture and shoulder surfing. Given the increasingly important roles smartphones play in e-commerce and other operations where security is crucial, there lies a strong need of continuous authentication mechanisms to complement and enhance one-time authentication such that even if the authentication at the point of login gets compromised, the device is still unobtrusively protected by additional security measures in a continuous fashion. The research community has investigated several continuous authentication mechanisms based on unique human behavioral traits, including typing, swiping, and gait. To this end, we focus on investigating physiological traits. While interacting with hand-held devices, individuals strive to achieve stability and precision. This is because a certain degree of stability is required in order to manipulate and interact successfully with smartphones, while precision is needed for tasks such as touching or tapping a small target on themore »touch screen (Sitov´a et al., 2015). As a result, to achieve stability and precision, individuals tend to develop their own postural preferences, such as holding a phone with one or both hands, supporting hands on the sides of upper torso and interacting, keeping the phone on the table and typing with the preferred finger, setting the phone on knees while sitting crosslegged and typing, supporting both elbows on chair handles and typing. On the other hand, physiological traits, such as hand-size, grip strength, muscles, age, 424 Ray, A., Hou, D., Schuckers, S. and Barbir, A. Continuous Authentication based on Hand Micro-movement during Smartphone Form Filling by Seated Human Subjects. DOI: 10.5220/0010225804240431 In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 424-431 ISBN: 978-989-758-491-6 Copyrightc 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved still, once compromised, fail to protect the user’s account and data. In contrast, continuous authentication, based on traits of human behavior, can offer additional security measures in the device to authenticate against unauthorized users, even after the entry-point and one-time authentication has been compromised. To this end, we have collected a new data-set of multiple behavioral biometric modalities (49 users) when a user fills out an account recovery form in sitting using an Android app. These include motion events (acceleration and angular velocity), touch and swipe events, keystrokes, and pattern tracing. In this paper, we focus on authentication based on motion events by evaluating a set of score level fusion techniques to authenticate users based on the acceleration and angular velocity data. The best EERs of 2.4% and 6.9% for intra- and inter-session respectively, are achieved by fusing acceleration and angular velocity using Nandakumar et al.’s likelihood ratio (LR) based score fusion.« less
  3. Large enterprises are increasingly relying on threat detection softwares (e.g., Intrusion Detection Systems) to allow them to spot suspicious activities. These softwares generate alerts which must be investigated by cyber analysts to figure out if they are true attacks. Unfortunately, in practice, there are more alerts than cyber analysts can properly investigate. This leads to a “threat alert fatigue” or information overload problem where cyber analysts miss true attack alerts in the noise of false alarms. In this paper, we present NoDoze to combat this challenge using contextual and historical information of generated threat alert in an enterprise. NoDoze first generates a causal dependency graph of an alert event. Then, it assigns an anomaly score to each event in the dependency graph based on the frequency with which related events have happened before in the enterprise. NoDoze then propagates those scores along the edges of the graph using a novel network diffusion algorithm and generates a subgraph with an aggregate anomaly score which is used to triage alerts. Evaluation on our dataset of 364 threat alerts shows that NoDoze decreases the volume of false alarms by 86%, saving more than 90 hours of analysts’ time, which was required to investigatemore »those false alarms. Furthermore, NoDoze generated dependency graphs of true alerts are 2 orders of magnitude smaller than those generated by traditional tools without sacrificing the vital information needed for the investigation. Our system has a low average runtime overhead and can be deployed with any threat detection software.« less
  4. Security of machine learning is increasingly becoming a major concern due to the ubiquitous deployment of deep learning in many security-sensitive domains. Many prior studies have shown external attacks such as adversarial examples that tamper the integrity of DNNs using maliciously crafted inputs. However, the security implication of internal threats (i.e., hardware vulnerabilities) to DNN models has not yet been well understood. In this paper, we demonstrate the first hardware-based attack on quantized deep neural networks–DeepHammer–that deterministically induces bit flips in model weights to compromise DNN inference by exploiting the rowhammer vulnerability. DeepHammer performs an aggressive bit search in the DNN model to identify the most vulnerable weight bits that are flippable under system constraints. To trigger deterministic bit flips across multiple pages within a reasonable amount of time, we develop novel system-level techniques that enable fast deployment of victim pages, memory-efficient rowhammering and precise flipping of targeted bits. DeepHammer can deliberately degrade the inference accuracy of the victim DNN system to a level that is only as good as random guess, thus completely depleting the intelligence of targeted DNN systems. We systematically demonstrate our attacks on real systems against 11 DNN architectures with 4 datasets corresponding to different applicationmore »domains. Our evaluation shows that DeepHammer is able to successfully tamper DNN inference behavior at run-time within a few minutes. We further discuss several mitigation techniques from both algorithm and system levels to protect DNNs against such attacks. Our work highlights the need to incorporate security mechanisms in future deep learning systems to enhance the robustness against hardware-based deterministic fault injections.« less
  5. Investigating the nature of system intrusions in large distributed systems remains a notoriously difficult challenge. While monitoring tools (e.g., Firewalls, IDS) provide preliminary alerts through easy-to-use administrative interfaces, attack reconstruction still requires that administrators sift through gigabytes of system audit logs stored locally on hundreds of machines. At present, two fundamental obstacles prevent synergy between system-layer auditing and modern cluster monitoring tools: 1) the sheer volume of audit data generated in a data center is prohibitively costly to transmit to a central node, and 2) system- layer auditing poses a “needle-in-a-haystack” problem, such that hundreds of employee hours may be required to diagnose a single intrusion. This paper presents Winnower, a scalable system for audit-based cluster monitoring that addresses these challenges. Our key insight is that, for tasks that are replicated across nodes in a distributed application, a model can be defined over audit logs to succinctly summarize the behavior of many nodes, thus eliminating the need to transmit redundant audit records to a central monitoring node. Specifically, Winnower parses audit records into provenance graphs that describe the actions of individual nodes, then performs grammatical inference over individual graphs using a novel adaptation of Deterministic Finite Automata (DFA) Learning tomore »produce a behavioral model of many nodes at once. This provenance model can be efficiently transmitted to a central node and used to identify anomalous events in the cluster. We have implemented Winnower for Docker Swarm container clusters and evaluate our system against real-world applications and attacks. We show that Winnower dramatically reduces storage and network overhead associated with aggregating system audit logs, by as much as 98%, without sacrificing the important information needed for attack investigation. Winnower thus represents a significant step forward for security monitoring in distributed systems.« less