skip to main content


Title: Structurally Driven Environmental Degradation of Friction in MoS2 Films
Abstract We report an investigation of the friction mechanisms of MoS 2 thin films under changing environments and contact conditions using a variety of computational and experimental techniques. Molecular dynamics simulations were used to study the effects of water and molecular oxygen on friction and bonding of MoS 2 lamellae during initial sliding. Characterization via photoelectron emission microscopy (PEEM) and Kelvin probe force microscopy (KPFM) were used to determine work function changes in shear modified material within the top few nanometers of MoS 2 wear scars. The work function was shown to change with contact conditions and environment, and shown by density functional theory (DFT) calculations and literature reports to be correlated with lamellae size and thickness of the basally oriented surface layer. Results from nanoscale simulations and macroscale experiments suggest that the evolution of the friction behavior of MoS 2 is linked primarily to the formation or inhibition of a basally oriented, molecularly thin surface film with long-range order.  more » « less
Award ID(s):
2027029
NSF-PAR ID:
10287366
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Tribology Letters
Volume:
69
Issue:
3
ISSN:
1023-8883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metallic friction materials currently used in industry may adversely impact the environment. Substitutions for metals in friction materials, on the other hand, can introduce operational safety issues and other unforeseeable problems such as thermal-mechanical instabilities. In this work, a molecular dynamics model has been developed for investigating the effects of material composition, density, and surface asperities on the tribological properties of inorganic 3C-SiC under various contact conditions at the atomic level. Predictions on the following results have been made: (1) elastic modulus, (2) tensile strength, (3) thermal conductivity, and (4) friction coefficient. The research findings can help improve the design of metal-free friction materials against thermal-mechanical failures. Parametric studies were performed by varying a number of conditions including (1) ambient temperature, (2) sliding speed, (3) crystal orientation, (4) asperity size, (5) degree of asperity intersection, (6) types of loading, and (7) surface contact. Plastic deformation and material transfer were successfully modeled between two sliding pairs. Some of the computational results were validated against existing experimental data found in the literature. The evaluation of wear rate was also incorporated. The model can easily be extended to deal with other nonmetallic friction composites. 
    more » « less
  2. Abstract

    Large area highly crystalline MoS2and WS2thin films were successfully grown on different substrates using radio-frequency magnetron sputtering technique. Structural, morphological and thermoelectric transport properties of MoS2,and WS2thin films have been investigated systematically to fabricate high-efficient thermal energy harvesting devices. X-ray diffraction data revealed that crystallites of MoS2and WS2films are highly oriented in 002 plane with uniform grain size distribution confirmed through atomic force microscopy study. Surface roughness increases with substrate temperature and it plays a big role in electron and phonon scattering. Interestingly, MoS2films also display low thermal conductivity at room temperature and strongly favors achievement of higher thermoelectric figure of merit value of up to 1.98. Raman spectroscopy data shows two distinct MoS2vibrational modes at 380 cm−1for E12gand 410 cm−1for A1g. Thermoelectric transport studies further demonstrated that MoS2films show p-type thermoelectric characteristics, while WS2is an n-type material. We demonstrated high efficient pn-junction thermoelectric generator device for waste heat recovery and cooling applications.

     
    more » « less
  3. Metalorganic chemical vapor deposition (MOCVD) growths of β-Ga 2 O 3 on on-axis (100) Ga 2 O 3 substrates are comprehensively investigated. Key MOCVD growth parameters including growth temperature, pressure, group VI/III molar flow rate ratio, and carrier gas flow rate are mapped. The dependence of the growth conditions is correlated with surface morphology, growth rate, and electron transport properties of the MOCVD grown (100) β-Ga 2 O 3 thin films. Lower shroud gas (argon) flow is found to enhance the surface smoothness with higher room temperature (RT) electron Hall mobility. The growth rate of the films decreases but with an increase of electron mobility as the VI/III molar flow rate ratio increases. Although no significant variation on the surface morphologies is observed at different growth temperatures, the general trend of electron Hall mobilities are found to increase with increasing growth temperature. The growth rates reduce significantly with uniform surface morphologies as the chamber pressure increases. By tuning the silane flow rate, the controllable carrier concentration of (100) β-Ga 2 O 3 thin films between low-10 17  cm −3 and low-10 18  cm −3 was achieved. Under optimized growth condition, an (100) β-Ga 2 O 3 thin film with RMS roughness value of 1.64 nm and a RT mobility of 24 cm 2 /Vs at a carrier concentration of 7.0 × 10 17  cm −3 are demonstrated. The mobilities are primarily limited by the twin lamellae and stacking faults defects generated from the growth interface. Atomic resolution scanning transmission electron microscopy reveals the formation of twin boundary defects in the films, resulting in the degradation of crystalline quality. Results from this work provide fundamental understanding of the MOCVD epitaxy of (100) β-Ga 2 O 3 on on-axis Ga 2 O 3 substrates and the dependence of the material properties on growth conditions. The limitation of electron transport properties of the (100) β-Ga 2 O 3 thin films below 25 cm 2 /Vs is attributed to the formation of incoherent boundaries (twin lamellae) and stacking faults grown along the on-axis (100) crystal orientation. 
    more » « less
  4. Interactions between molecules in the synovial fluid and the cartilage surface may play a vital role in the formation of adsorbed films that contribute to the low friction of cartilage boundary lubrication. Osteoarthritis (OA) is the most common degenerative joint disease. Previous studies have shown that in OA-diseased joints, hyaluronan (HA) not only breaks down resulting in a much lower molecular weight (MW), but also its concentration is reduced ten times. Here, we have investigated the structural changes of lipid-HA complexes as a function of HA concentration and MW to simulate the physiologically relevant conditions that exist in healthy and diseased joints. Small angle neutron scattering and dynamic light scattering were used to determine the structure of HA-lipid vesicles in bulk solution, while a combination of atomic force microscopy and quartz crystal microbalance was applied to study their assembly on a gold surface. We infer a significant influence of both MW and HA concentrations on the structure of HA-lipid complexes in bulk and assembled on a gold surface. Our results suggest that low MW HA cannot form an amorphous layer on the gold surface, which is expected to negatively impact the mechanical integrity and longevity of the boundary layer and could contribute to the increased wear of the cartilage that has been reported in joints diseased with OA. 
    more » « less
  5. Abstract

    While it has been shown that the mechanical properties and the reactivity of carbonate‐bearing rocks may be influenced by the chemical composition of the fluids, little is known about how the fluid composition affects their frictional response. Here, we have used atomic force microscopy to investigate the frictional characteristics of single calcite crystals in calcium carbonate saturated solutions and in two brines, NaCl and CaCl2, at a wide range of geologically relevant concentrations. Surface forces were measured to determine the ion‐specific composition of the confined fluid films and the adhesion between the confining surfaces. The effect of fluid chemistry on calcite's (dynamic) frictional response significantly depends on the normal stress. At low stresses, the confined fluid film lubricates the single‐asperity contact efficiently, resulting in low friction coefficients, especially in the case of NaCl solutions. When the pressure solution of calcite is triggered at sufficiently high stress, a significant reduction of the friction coefficient was observed, and in this case, CaCl2solutions were shown to promote this frictional weakening more significantly than NaCl. This is the first experimental investigation of the ion‐specific frictional characteristics of calcite at the level of a single‐asperity contact. The presence of infiltrated fluids in carbonate faults may also play a critical role in fault dynamics. Hence, the results of this nanoscale study are extrapolated to carbonate fault friction in the presence of infiltrated fluids, and they contribute to advance our understanding of induced seismicity at geological scale.

     
    more » « less