skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Personalized Wellbeing Prediction using Behavioral, Physiological and Weather Data
We built and compared several machine learning models to predict future self-reported wellbeing labels (of mood, health, and stress) for next day and for up to 7 days in the future, using multi-modal data. The data are from surveys, wearables, mobile phones and weather information collected in a study from college students, each providing daily data for 30 or 90 days. We compared the performance of multiple models, including personalized multi-task models and deep learning models. The best personalized multi-task linear model showed mean absolute errors of 12.8, 11.9, and 13.7 on a continuous-100 pt scale for estimating next days mood, health, and stress value, while the best multi-task neural network model, applied to 3-way high/med/low classification of the wellbeing values showed F1 scores of 0.71, 0.74, and 0.66 on mood, health, and stress metrics, respectively. We found that features related to weather, and morning academic activities are strongly associated with wellbeing labels. We further found greater prediction accuracy among participants with the least fluctuations in their wellbeing labels.  more » « less
Award ID(s):
1840167
PAR ID:
10108774
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE-EMBS Biomedical and Health Informatics 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Shift workers who are essential contributors to our society, face high risks of poor health and wellbeing. To help with their problems, we collected and analyzed physiological and behavioral wearable sensor data from shift working nurses and doctors, as well as their behavioral questionnaire data and their self-reported daily health and wellbeing labels, including alertness, happiness, energy, health, and stress. We found the similarities and differences between the responses of nurses and doctors. According to the differences in self-reported health and wellbeing labels between nurses and doctors, and the correlations among their labels, we proposed a job-role based multitask and multilabel deep learning model, where we modeled physiological and behavioral data for nurses and doctors simultaneously to predict participants’ next day’s multidimensional self-reported health and wellbeing status. Our model showed significantly better performances than baseline models and previous state-of-the-art models in the evaluations of binary/3-class classification and regression prediction tasks. We also found features related to heart rate, sleep, and work shift contributed to shift workers’ health and wellbeing. 
    more » « less
  2. Accurately forecasting stress may enable people to make behavioral changes that could improve their future health. For example, accurate stress forecasting might inspire people to make changes to their schedule to get more sleep or exercise, in order to reduce excessive stress tomorrow night. In this paper, we examine how accurately the previous N-days of multi-modal data can forecast tomorrow evening’s high/low binary stress levels using long short-term memory neural network models (LSTM), logistic regression (LR), and support vector machines (SVM). Using a total of 2,276 days, with 1,231 overlapping 8-day sequences of data from 142 participants (including physiological signals, mobile phone usage, location, and behavioral surveys), we find the LSTM significantly outperforms LR and SVM with the best results reaching 83.6% using 7 days of prior data. Using time-series models improves the forecasting of stress even when considering only subsets of the multi-modal data set, e.g., using only physiology data. In particular, the LSTM model reaches 81.4% accuracy using only objective and passive data, i.e., not including subjective reports from a daily survey. 
    more » « less
  3. Abstract Accurate prediction of postoperative complications can inform shared decisions regarding prognosis, preoperative risk-reduction, and postoperative resource use. We hypothesized that multi-task deep learning models would outperform conventional machine learning models in predicting postoperative complications, and that integrating high-resolution intraoperative physiological time series would result in more granular and personalized health representations that would improve prognostication compared to preoperative predictions. In a longitudinal cohort study of 56,242 patients undergoing 67,481 inpatient surgical procedures at a university medical center, we compared deep learning models with random forests and XGBoost for predicting nine common postoperative complications using preoperative, intraoperative, and perioperative patient data. Our study indicated several significant results across experimental settings that suggest the utility of deep learning for capturing more precise representations of patient health for augmented surgical decision support. Multi-task learning improved efficiency by reducing computational resources without compromising predictive performance. Integrated gradients interpretability mechanisms identified potentially modifiable risk factors for each complication. Monte Carlo dropout methods provided a quantitative measure of prediction uncertainty that has the potential to enhance clinical trust. Multi-task learning, interpretability mechanisms, and uncertainty metrics demonstrated potential to facilitate effective clinical implementation. 
    more » « less
  4. Depression is a very common mental health disorder with a devastating social and economic impact. It can be costly and difficult to detect, traditionally requiring a significant number of hours by a trained mental health professional. Recently, machine learning and deep learning models have been trained for depression screening using modalities extracted from videos of clinical interviews conducted by a virtual agent. This complex task is challenging for deep learning models because of the multiple modalities and limited number of participants in the dataset. To address these challenges we propose AudiFace, a multimodal deep learning model that inputs temporal facial features, audio, and transcripts to screen for depression. To incorporate all three modalities, AudiFace combines multiple pre-trained transfer learning models and bidirectional LSTM with self-Attention. When compared with the state-of-the-art models, AudiFace achieves the highest F1 scores for thirteen of the fifteen different datasets. AudiFace notably improves the depression screening capabilities of general wellbeing questions. Eye gaze proved to be the most valuable of the temporal facial features, both in the unimodal and multimodal models. Our results can be used to determine the best combination of modalities, temporal facial features, as well as clinical interview questions for future depression screening applications. 
    more » « less
  5. Estimating human joint moments using wearable sensors has utility for personalized health monitoring and generalized exoskeleton control. Data-driven models have potential to map wearable sensor data to human joint moments, even with a reduced sensor suite and without subject-specific calibration. In this study, we quantified the RMSE and R 2 of a temporal convolutional network (TCN), trained to estimate human hip moments in the sagittal plane using exoskeleton sensor data (i.e., a hip encoder and thigh- and pelvis-mounted inertial measurement units). We conducted three analyses in which we iteratively retrained the network while: 1) varying the input sequence length of the model, 2) incorporating noncausal data into the input sequence, thus delaying the network estimates, and 3) time shifting the labels to train the model to anticipate (i.e., predict) human hip moments. We found that 930 ms of causal input data maintained model performance while minimizing input sequence length (validation RMSE and R 2 of 0.141±0.014 Nm/kg and 0.883±0.025, respectively). Further, delaying the model estimate by up to 200 ms significantly improved model performance compared to the best causal estimators (p<0.05), improving estimator fidelity in use cases where delayed estimates are acceptable (e.g., in personalized health monitoring or diagnoses). Finally, we found that anticipating hip moments further in time linearly increased model RMSE and decreased R 2 (p<0.05); however, performance remained strong (R 2 >0.85) when predicting up to 200 ms ahead. 
    more » « less