skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hear "No Evil", See "Kenansville": Efficient and Transferable Black-Box Attacks on Speech Recognition and Voice Identification Systems
Automatic speech recognition and voice identification systems are being deployed in a wide array of applications, from providing control mechanisms to devices lacking traditional interfaces, to the automatic transcription of conversations and authentication of users. Many of these applications have significant security and privacy considerations. We develop attacks that force mistranscription and misidentification in state of the art systems, with minimal impact on human comprehension. Processing pipelines for modern systems are comprised of signal preprocessing and feature extraction steps, whose output is fed to a machine-learned model. Prior work has focused on the models, using white-box knowledge to tailor model-specific attacks. We focus on the pipeline stages before the models, which (unlike the models) are quite similar across systems. As such, our attacks are black-box, transferable, can be tuned to require zero queries to the target, and demonstrably achieve mistranscription and misidentification rates as high as 100% by modifying only a few frames of audio. We perform a study via Amazon Mechanical Turk demonstrating that there is no statistically significant difference between human perception of regular and perturbed audio. Our findings suggest that models may learn aspects of speech that are generally not perceived by human subjects, but that are crucial for model accuracy.  more » « less
Award ID(s):
1933208
PAR ID:
10287476
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the IEEE Symposium on Security and Privacy
ISSN:
1063-9578
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Automatic Speech Recognition (ASR) systems are widely used in various online transcription services and personal digital assistants. Emerging lines of research have demonstrated that ASR systems are vulnerable to hidden voice commands, i.e., audio that can be recognized by ASRs but not by humans. Such attacks, however, often either highly depend on white-box knowledge of a specific machine learning model or require special hardware to construct the adversarial audio. This paper proposes a new model-agnostic and easily-constructed attack, called CommanderGabble, which uses fast speech to camouflage voice commands. Both humans and ASR systems often misinterpret fast speech, and such misinterpretation can be exploited to launch hidden voice command attacks. Specifically, by carefully manipulating the phonetic structure of a target voice command, ASRs can be caused to derive a hidden meaning from the manipulated, high-speed version. We implement the discovered attacks both over-the-wire and over-the-air, and conduct a suite of experiments to demonstrate their efficacy against 7 practical ASR systems. Our experimental results show that the over-the-wire attacks can disguise as many as 96 out of 100 tested voice commands into adversarial ones, and that the over-the-air attacks are consistently successful for all 18 chosen commands in multiple real-world scenarios. 
    more » « less
  2. Automatic Speech Recognition (ASR) systems convert speech into text and can be placed into two broad categories: traditional and fully end-to-end. Both types have been shown to be vulnerable to adversarial audio examples that sound benign to the human ear but force the ASR to produce malicious transcriptions. Of these attacks, only the "psychoacoustic" attacks can create examples with relatively imperceptible perturbations, as they leverage the knowledge of the human auditory system. Unfortunately, existing psychoacoustic attacks can only be applied against traditional models, and are obsolete against the newer, fully end-to-end ASRs. In this paper, we propose an equalization-based psychoacoustic attack that can exploit both traditional and fully end-to-end ASRs. We successfully demonstrate our attack against real-world ASRs that include DeepSpeech and Wav2Letter. Moreover, we employ a user study to verify that our method creates low audible distortion. Specifically, 80 of the 100 participants voted in favor of all our attack audio samples as less noisier than the existing state-of-the-art attack. Through this, we demonstrate both types of existing ASR pipelines can be exploited with minimum degradation to attack audio quality. 
    more » « less
  3. Speech is a natural channel for human-computer interaction in robotics and consumer applications. Natural language understanding pipelines that start with speech can have trouble recovering from speech recognition errors. Black-box automatic speech recognition (ASR) systems, built for general purpose use, are unable to take advantage of in-domain language models that could otherwise ameliorate these errors. In this work, we present a method for re-ranking black-box ASR hypotheses using an in-domain language model and semantic parser trained for a particular task. Our re-ranking method significantly improves both transcription accuracy and semantic understanding over a state-of-the-art ASR’s vanilla output. 
    more » « less
  4. Adversarial machine learning research has recently demonstrated the feasibility to confuse automatic speech recognition (ASR) models by introducing acoustically imperceptible perturbations to audio samples. To help researchers and practitioners gain better understanding of the impact of such attacks, and to provide them with tools to help them more easily evaluate and craft strong defenses for their models, we present Adagio, the first tool designed to allow interactive experimentation with adversarial attacks and defenses on an ASR model in real time, both visually and aurally. Adagio incorporates AMR and MP3 audio compression techniques as defenses, which users can interactively apply to attacked audio samples. We show that these techniques, which are based on psychoacoustic principles, effectively eliminate targeted attacks, reducing the attack success rate from 92.5% to 0%. We will demonstrate Adagio and invite the audience to try it on the Mozilla Common Voice dataset. Code related to this paper is available at: https://github.com/nilakshdas/ADAGIO. 
    more » « less
  5. We introduce a deep learning model for speech denoising, a long-standing challenge in audio analysis arising in numerous applications. Our approach is based on a key observation about human speech: there is often a short pause between each sentence or word. In a recorded speech signal, those pauses introduce a series of time periods during which only noise is present. We leverage these incidental silent intervals to learn a model for automatic speech denoising given only mono-channel audio. Detected silent intervals over time expose not just pure noise but its time-varying features, allowing the model to learn noise dynamics and suppress it from the speech signal. Experiments on multiple datasets confirm the pivotal role of silent interval detection for speech denoising, and our method outperforms several state-of-the-art denoising methods, including those that accept only audio input (like ours) and those that denoise based on audiovisual input (and hence require more information). We also show that our method enjoys excellent generalization properties, such as denoising spoken languages not seen during training. 
    more » « less