skip to main content

Title: Fiber-Sampled Stochastic Mirror Descent for Tensor Decomposition with β-Divergence
Canonical polyadic decomposition (CPD) has been a workhorse for multimodal data analytics. This work puts forth a stochastic algorithmic framework for CPD under β-divergence, which is well-motivated in statistical learning—where the Euclidean distance is typically not preferred. Despite the existence of a series of prior works addressing this topic, pressing computational and theoretical challenges, e.g., scalability and convergence issues, still remain. In this paper, a unified stochastic mirror descent framework is developed for large-scale β-divergence CPD. Our key contribution is the integrated design of a tensor fiber sampling strategy and a flexible stochastic Bregman divergence-based mirror descent iterative procedure, which significantly reduces the computation and memory cost per iteration for various β. Leveraging the fiber sampling scheme and the multilinear algebraic structure of low-rank tensors, the proposed lightweight algorithm also ensures global convergence to a stationary point under mild conditions. Numerical results on synthetic and real data show that our framework attains significant computational saving compared with state-of-the-art methods.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
2925 to 2929
Sponsoring Org:
National Science Foundation
More Like this
  1. This work focuses on canonical polyadic decomposition (CPD) for large-scale tensors. Many prior works rely on data sparsity to develop scalable CPD algorithms, which are not suitable for handling dense tensor, while dense tensors often arise in applications such as image and video processing. As an alternative, stochastic algorithms utilize data sampling to reduce per-iteration complexity and thus are very scalable, even when handling dense tensors. However, existing stochastic CPD algorithms are facing some challenges. For example, some algorithms are based on randomly sampled tensor entries, and thus each iteration can only updates a small portion of the latent factors. This may result in slow improvement of the estimation accuracy of the latent factors. In addition, the convergence properties of many stochastic CPD algorithms are unclear, perhaps because CPD poses a hard nonconvex problem and is challenging for analysis under stochastic settings. In this work, we propose a stochastic optimization strategy that can effectively circumvent the above challenges. The proposed algorithm updates a whole latent factor at each iteration using sampled fibers of a tensor, which can quickly increase the estimation accuracy. The algorithm is flexible-many commonly used regularizers and constraints can be easily incorporated in the computational framework. Themore »algorithm is also backed by a rigorous convergence theory. Simulations on large-scale dense tensors are employed to showcase the effectiveness of the algorithm.« less
  2. Sampling-based methods promise scalability improvements when paired with stochastic gradient descent in training Graph Convolutional Networks (GCNs). While effective in alleviating the neighborhood explosion, due to bandwidth and memory bottlenecks, these methods lead to computational overheads in preprocessing and loading new samples in heterogeneous systems, which significantly deteriorate the sampling performance. By decoupling the frequency of sampling from the sampling strategy, we propose LazyGCN, a general yet effective framework that can be integrated with any sampling strategy to substantially improve the training time. The basic idea behind LazyGCN is to perform sampling periodically and effectively recycle the sampled nodes to mitigate data preparation overhead. We theoretically analyze the proposed algorithm and show that under a mild condition on the recycling size, by reducing the variance of inner layers, we are able to obtain the same convergence rate as the underlying sampling method. We also give corroborating empirical evidence on large real-world graphs, demonstrating that the proposed schema can significantly reduce the number of sampling steps and yield superior speedup without compromising the accuracy.
  3. We present a new framework to analyze accelerated stochastic mirror descent through the lens of continuous-time stochastic dynamic systems. It enables us to design new algorithms, and perform a unified and simple analysis of the convergence rates of these algorithms. More specifically, under this framework, we provide a Lyapunov function based analysis for the continuous-time stochastic dynamics, as well as several new discrete-time algorithms derived from the continuous-time dynamics. We show that for general convex objective functions, the derived discrete-time algorithms attain the optimal convergence rate. Empirical experiments corroborate our theory.
  4. We provide a second-order stochastic differential equation (SDE), which characterizes the continuous-time dynamics of accelerated stochastic mirror descent (ASMD) for strongly convex functions. This SDE plays a central role in designing new discrete-time ASMD algorithms via numerical discretization, and providing neat analyses of their convergence rates based on Lyapunov functions. Our results suggest that the only existing ASMD algorithm, namely, AC-SA proposed in Ghadimi & Lan (2012) is one instance of its kind, and we can actually derive new instances of ASMD with fewer tuning parameters. This sheds light on revisiting accelerated stochastic optimization through the lens of SDEs, which can lead to a better understanding of acceleration in stochastic optimization, as well as new simpler algorithms. Numerical experiments on both synthetic and real data support our theory.
  5. We consider a distributed empirical risk minimization (ERM) optimization problem with communication efficiency and privacy requirements, motivated by the federated learn- ing (FL) framework. We propose a distributed communication-efficient and local differentially private stochastic gradient descent (CLDP-SGD) algorithm and analyze its communication, privacy, and convergence trade-offs. Since each iteration of the CLDP- SGD aggregates the client-side local gradients, we develop (optimal) communication-efficient schemes for mean estimation for several lp spaces under local differential privacy (LDP). To overcome performance limitation of LDP, CLDP-SGD takes advantage of the inherent privacy amplification provided by client sub- sampling and data subsampling at each se- lected client (through SGD) as well as the recently developed shuffled model of privacy. For convex loss functions, we prove that the proposed CLDP-SGD algorithm matches the known lower bounds on the centralized private ERM while using a finite number of bits per iteration for each client, i.e., effectively get- ting communication efficiency for “free”. We also provide preliminary experimental results supporting the theory.