skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: EVALUATION OF SYSTEMATIC DESIGN METHODS USED IN SENIOR DESIGN PROJECTS
System Engineering (SE) is utilized in structuring a product development process into simple and collaborative activities, while at the same time, supporting engineers’ decision-making. In most undergraduate engineering design courses, SE was taught by assigning industrial-like projects in which teams of students developed products using certain design methods while following structured design process. It has been observed that some design methods were adopted naturally and used effectively by students while some are less preferred. This is due to various reasons, from strict project deadlines to the fact that some methods are difficult to understand. In this paper, we studied these design methods in the context of senior design projects. We have observed students’ applications of these methods and conducted surveys to assess whether they believe these methods helped their design activities. This study will help us understand how to help students gain knowledge in product development through project-based learning, as well as provide some insights on how inexperienced engineers may use various design methods.  more » « less
Award ID(s):
1601522
PAR ID:
10287685
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of IMECE 2021, ASME International Mechanical Engineering Congress and Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. East Carolina University (ECU) was funded by a multi-institutional Track 3 S-STEM Grant #1930497 in January 2020. The funds from this grant have been used to recruit and support three cohorts of students at ECU and three partnering community colleges. The project is referred to internally as the PIRATES project for Providing Inclusive Residential and Transfer Engineering Support. In addition to funding scholarships, the research aim of this project uses Lee and Matusovich’s Model of Co-Curricular Support for Undergraduate Engineering Students [1] to study best practices in co-curricular support for both students who start their pathway towards an engineering degree at a university and students whose higher education academic pathway began at a community college. Major goals of the project include building a sense of belonging and an engineering identity among students both within and across cohorts and institutions. One of the ways that this project has worked to encourage student retention and persistence in engineering is through engineering design challenges coupled with related presentations from speakers working in a variety of engineering careers. The goals of these events are to showcase the many opportunities engineering students have and the many ways that engineers work to solve local and global issues by having students engage in small engineering projects that can be completed in one day and showcasing how those projects relate to a broader field of engineering. The projects extend the experiences students have in various engineering courses and labs and introduce some technical skills that students may not develop in traditional classrooms and lab courses. This paper will highlight the design problems posed to students during single-day design activities in which students from all cohorts and participating institutions were invited to work in teams to tackle design challenges. Student teams were purposefully assigned to get students working together who attend different institutions and are in different graduating classes to create mentoring opportunities for less experienced students to learn from more experienced students. Emphasis is also placed on how students were introduced to career opportunities related to the design challenges by recruiting alumni from the partnering institutions to speak on the work they do and how their educational pathways prepared them for diverse careers. This paper will also discuss survey and focus group interview data from students participating in these activities to showcase how the activities may have helped to expand their knowledge of opportunities available to engineers in a variety of fields. 
    more » « less
  2. This is a research study that investigates the range of conceptions of prototyping in engineering design courses through exploring the conceptions and implementations from the instructors’ perspective. Prototyping is certainly an activity central to engineering design. The context of prototyping to support engineering education and practice has a range of implementations in an undergraduate engineering curriculum, from first-year engineering to capstone engineering design experiences. Understanding faculty conceptions’ of the reason, purpose, and place of prototyping can help illustrate how teaching and learning of the engineering design process is realistically implemented across a curriculum and how students are prepared for work practice. We seek to understand, and consequently improve, engineering design teaching and learning, through transformations of practice that are based on engineering education research. In this exploratory study, we interviewed three faculty members who teach engineering design in project-based learning courses across the curriculum of an undergraduate engineering program. This builds on related work done by the authors that previously investigated undergraduate engineering students’ conceptions of prototyping activities and process. With our instructor participants, a similar interview protocol was followed through semi-structured qualitative interviews. Data analysis has been undertaken through an emerging thematic analysis of these interview transcripts. Early findings characterize the focus on teaching the design process; the kind of feedback that the educators provide on students’ prototypes; students’ behavior while working on design projects; and educators’ perspectives on the design course. Understanding faculty conceptions with students’ conceptions of prototyping can shed light on the efficacy of using prototyping as an authentic experience in design teaching and learning. In project-based learning courses, particular issues of authenticity and assessment are under consideration, especially across the curriculum. More specifically, “proportions of problems” inform “problem solving” as one of the key characteristics in design thinking, teaching and learning. More attention to prototyping as part of the study of problem-solving processes can be useful to enhance understanding of the impact of instructional design. Challenges for teaching engineering design exist, and may be due to difficulties in framing design problems, recognizing what expertise students possess, and assessing their expertise to help them reach their goals, all at an appropriate place and ambiguity with student learning goals. Initial findings show that prototyping activities can help students become more reflective on their design. Scaffolded activities in prototyping can support self-regulated learning by students. The range of support and facilities, such as campus makerspaces, may also help students and instructors alike develop industry-ready engineering students. 
    more » « less
  3. Abstract The objective of this study is to investigate students’ decision-making during the information gathering activities of a design process. Existing literature in engineering education has shown that students face difficulties while gathering information in various activities of a design process such as brainstorming and CAD modeling. Decision-making is an important aspect of these activities. While gathering information, students make several decisions such as what information to acquire and how to acquire that information. There lies a research gap in understanding how students make decisions while gathering information in a product design process. To address this gap, we conduct semi-structured interviews and surveys in a product design course. We analyze the students’ decision-making activities from the lens of a sequential information acquisition and decision-making (SIADM) framework. We find that the students recognize the need to acquire information about the physics and dynamics of their design artifact during the CAD modeling activity of the product design process. However, they do not acquire such information from their CAD models primarily due to the lack of the project requirements, their ability, and the time to do so. Instead, they acquire such information from the prototyping activity as their physical prototype does not satisfy their design objectives. However, the students do not get the opportunity to iterate their prototype with the given cost and time constraints. Consequently, they rely on improvising during prototyping. Based on our observations, we discuss the need for designing course project activities such that it facilitates students’ product design decisions. 
    more » « less
  4. Focus/Problem Statement Freshman engineering students can have a hard time transitioning to college. The freshman year is critical to the students’ academic success; in this year they learn basic skills and establish essential networks with other students, faculty, and resources. How can we help these freshman engineering students in this transition? Theoretical or Conceptual Framework We propose that freshman students can learn from the engineering design innovation process and apply it by analogy to the design of their academic pathways. There are multiple similarities between product innovation (i.e., technology) and the continuous academic challenges faced by the student. Engineers as designers and innovators have a vast and rich repository of techniques, tools, and approaches to develop new technologies, and a parallelism can be drawn between the design and innovation of a technology (e.g., redesign of a kitchen appliance), and the “design” of the students’ academic career pathways. Methodology/Design of the Study or Organization The pilot for the Spring 2023 semester will have Intro to Mechanical Engineering (MECE 1101) students work in teams in a semester-long product innovation project to redesign a simple kitchen appliance. Students will learn theory and methodology of the design process (e.g., creative exploration of solutions, decision making, multi objective evaluation, etc.). These same students will concurrently take UNIV 1301 (Learning Frameworks) where they will have a semester-long project to define their career pathways. Both projects, product innovation and career pathways, will follow the Challenge Based Instruction (CBI) approach. Periodically, a connection will be established between the projects to show the students how to use the lessons from product innovation by analogy and reflection in their career pathways project. The authors believe that the MECE 1101 project initiates a process for students to become innovators and entrepreneurs, while the UNIV 1301 project prepares students as self-innovators for future academic, personal, and professional challenges. Findings/Conclusions In this session, the authors will share their experiences and plan of implementation as well as details from recent NSF IUSE HSI funding for this purpose. The authors expect audience engagement to receive suggestions and ideas to improve freshman student success. 
    more » « less
  5. Freshman engineering students can have a hard time transitioning to college. The freshman year is critical to the students’ academic success; in this year they learn basic skills and establish essential networks with other students, faculty, and resources. How can we help these freshman engineering students in this transition? We propose that freshman students can learn from the engineering design innovation process and apply it by analogy to the design of their academic pathways. There are multiple similarities between product innovation (i.e., technology) and the continuous academic challenges faced by the student. Engineers as designers and innovators have a vast and rich repository of techniques, tools, and approaches to develop new technologies, and a parallelism can be drawn between the design and innovation of a technology (e.g., redesign of a kitchen appliance), and the “design” of the students’ academic career pathways. During the Spring 2023 semester pilot, students in Intro to Mechanical Engineering (Course A) worked in teams in a 6-week product innovation project to redesign a simple kitchen appliance. Students learned basic concepts of the design process (e.g., creative exploration of solutions, decision making, multi objective evaluation, etc.). These same students concurrently took Course B (Learning Frameworks) where they worked on a 6-week project to define their career pathways. Both projects, product innovation and career pathways, followed the Challenge Based Instruction (CBI) approach. Periodically, participant students were shown how to use the lessons from product innovation by analogy and reflection in their career pathways project. The objective is for students to learn about the engineering design process and to apply it to their academic challenges by analogy. This prepares students with meta skills to help solve future problems in their academic path, and at each iteration, the students transform themselves, hence the use of the term self-transformation (also referred as “self-innovation”). Data collected from pre and post surveys will be presented to measure self-efficacy in engineering design, grit, motivation to learn, and STEM identity. Participant interviews provide a qualitative insight into the intervention. This project is funded by NSF award 2225247. 
    more » « less