skip to main content


Title: Design Educators’ Conceptions of Prototyping in Engineering Design Courses
This is a research study that investigates the range of conceptions of prototyping in engineering design courses through exploring the conceptions and implementations from the instructors’ perspective. Prototyping is certainly an activity central to engineering design. The context of prototyping to support engineering education and practice has a range of implementations in an undergraduate engineering curriculum, from first-year engineering to capstone engineering design experiences. Understanding faculty conceptions’ of the reason, purpose, and place of prototyping can help illustrate how teaching and learning of the engineering design process is realistically implemented across a curriculum and how students are prepared for work practice. We seek to understand, and consequently improve, engineering design teaching and learning, through transformations of practice that are based on engineering education research. In this exploratory study, we interviewed three faculty members who teach engineering design in project-based learning courses across the curriculum of an undergraduate engineering program. This builds on related work done by the authors that previously investigated undergraduate engineering students’ conceptions of prototyping activities and process. With our instructor participants, a similar interview protocol was followed through semi-structured qualitative interviews. Data analysis has been undertaken through an emerging thematic analysis of these interview transcripts. Early findings characterize the focus on teaching the design process; the kind of feedback that the educators provide on students’ prototypes; students’ behavior while working on design projects; and educators’ perspectives on the design course. Understanding faculty conceptions with students’ conceptions of prototyping can shed light on the efficacy of using prototyping as an authentic experience in design teaching and learning. In project-based learning courses, particular issues of authenticity and assessment are under consideration, especially across the curriculum. More specifically, “proportions of problems” inform “problem solving” as one of the key characteristics in design thinking, teaching and learning. More attention to prototyping as part of the study of problem-solving processes can be useful to enhance understanding of the impact of instructional design. Challenges for teaching engineering design exist, and may be due to difficulties in framing design problems, recognizing what expertise students possess, and assessing their expertise to help them reach their goals, all at an appropriate place and ambiguity with student learning goals. Initial findings show that prototyping activities can help students become more reflective on their design. Scaffolded activities in prototyping can support self-regulated learning by students. The range of support and facilities, such as campus makerspaces, may also help students and instructors alike develop industry-ready engineering students.  more » « less
Award ID(s):
1723802
NSF-PAR ID:
10112030
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Prototyping in design provides ways to navigate ambiguity in the design problem, gain insight through the refinement of ideas, and aid in communication between team members. However, while designing, students often underutilize prototyping and do not consider it as an integral part of the design process. To facilitate the scaffolding of design activities, it is necessary first to understand students’ conceptions of prototyping. In this study, we use artifact elicitation interviews as a method to elicit students’ conceptions by moving from the specifics of the artifacts they brought with them to the interview, to their general understanding of prototyping. Participants in the study are students in an undergraduate sophomore design oriented, project-based learning course in a large southwestern university. Students were invited to participate in a screening survey. After potential participants suitable for the purpose of this study were identified, some were selected for a follow-up interview. The findings of the study describe students’ conceptions of “what counts” as a prototype; what is valued in a prototype; the benefits of, and challenges associated with prototyping; and differences between in-class and out-of-class prototyping activities. The findings of this study improve our understanding to effectively scaffold prototyping activities in design and experiential learning. 
    more » « less
  2. null (Ed.)
    This NSF EAGER research paper investigates how undergraduate STEM and engineering students’ learning trajectories evolve over time, from 1st to senior year, along a novice to expert spectrum. We borrow the idea of “learning trajectories” from mathematics education that can paint the evolution of students’ knowledge and skills over time over a set of learning experiences. Curricula for undergraduate engineering programs can reflect an intended pathway of knowledge construction within a discipline. We intend our study of individual students within undergraduate STEM and engineering programs can highlight how this may happen in situ and how it may be similar or might differ from a given, prescribed programs of study among disciplines. We use a theoretical framework based in adaptive expertise and design thinking adaptive expertise to develop a design learning continuum further. Envisioned routes through disciplinary undergraduate curricula and student conceptions of their design process are explored through qualitative, semi-structured interviews with undergraduate 1st year and senior year students across STEM, engineering and non-STEM field such as computer science, mechanical engineering, general engineering, mathematics, science, English, and art. We also conduct similar interviews with faculty in these fields who are responsible and knowledgeable for undergraduate programs about their perceived benefits for the structure of their program’s curriculum. Additional information is collected from noticing the organizational and pedagogical structures of the relative undergraduate curriculum. Initial findings/outcomes suggest that traditions to knowledge construction both differ across disciplinary approaches and have similarities across non-obvious disciplinary relationships. Faculty have a firm understanding of how one class chains from one to another; students have less of a field of view for how mindful chunks of knowledge combine together. 
    more » « less
  3. null (Ed.)
    We detail an exploratory study of faculty members’ perceptions of activities associated with undergraduate engineering programs in university-based makerspaces. Our study examines the affordances and constraints faculty perceive regarding teaching and learning in these spaces and, specifically, how makerspaces support engineering faculty members in accomplishing the goals and expectations they have for undergraduate students’ learning and development. We found that makerspaces inspired faculty members’ curricular and instructional innovations, including design of new courses and implementation of practices meant to result in more team-based and active learning. Faculty perceived student activities in makerspaces as fostering of student agency and development of engineering skills, knowledge, and affect. Faculty also identified concerns related to the teaching of engineering in these spaces, including the need to change their instructional practices to more fully engage students and to balance the sophisticated tools and resources with the rigor of completing complex engineering tasks. We use structuration theory to illuminate how faculty act, rationalize, and reflect on their teaching practices and goals in relation to structures present in university-based makerspace. Our study is intended to inform faculty and administrators working to engage students through interactions in makerspaces or similar innovations, and to consider how access to and impact of these structures support undergraduate engineering education. 
    more » « less
  4. We detail an exploratory study of faculty members’ perceptions of activities associated with undergraduate engineering programs in university-based makerspaces. Our study examines the affordances and constraints faculty perceive regarding teaching and learning in these spaces and, specifically, how makerspaces support engineering faculty members in accomplishing the goals and expectations they have for undergraduate students’ learning and development. We found that makerspaces inspired faculty members’ curricular and instructional innovations, including design of new courses and implementation of practices meant to result in more team-based and active learning. Faculty perceived student activities in makerspaces as fostering of student agency and development of engineering skills, knowledge, and affect. Faculty also identified concerns related to the teaching of engineering in these spaces, including the need to change their instructional practices to more fully engage students and to balance the sophisticated tools and resources with the rigor of completing complex engineering tasks. We use structuration theory to illuminate how faculty act, rationalize, and reflect on their teaching practices and goals in relation to structures present in university-based makerspace. Our study is intended to inform faculty and administrators working to engage students through interactions in makerspaces or similar innovations, and to consider how access to and impact of these structures support undergraduate engineering education. 
    more » « less
  5. Engineering is fundamentally about design, yet many undergraduate programs offer limited opportunities for students to learn to design. This design case reports on a grant-funded effort to revolutionize how chemical engineering is taught. Prior to this effort, our chemical engineering program was like many, offering core courses primarily taught through lectures and problem sets. While some faculty referenced examples, students had few opportunities to construct and apply what they were learning. Spearheaded by a team that included the department chair, a learning scientist, a teaching-intensive faculty member, and faculty heavily engaged with the undergraduate program, we developed and implemented design challenges in core chemical engineering courses. We began by co-designing with students and faculty, initially focusing on the first two chemical engineering courses students take. We then developed templates and strategies that supported other faculty-student teams to expand the approach into more courses. Across seven years of data collection and iterative refinements, we developed a framework that offers guidance as we continue to support new faculty in threading design challenges through core content-focused courses. We share insights from our process that supported us in navigating through challenging questions and concerns.

     
    more » « less