skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Creel Surveys for Social-Ecological-Systems Focused Fisheries Management
Recreational fisheries are social-ecological systems (SES), and knowledge of human dimensions coupled with ecology are critically needed to understand their system dynamics. Creel surveys, which typically occur in-person and on-site, serve as an important tool for informing fisheries management. Recreational fisheries creel data have the potential to inform large-scale understanding of social and ecological dynamics, but applications are currently limited by a disconnect between the questions posed by social-ecological researchers and the methods in which surveys are conducted. Although innovative use of existing data can increase understanding of recreational fisheries as SES, creel surveys should also adapt to changing information needs. These opportunities include using the specific temporal and spatial scope of creel survey data, integrating these data with alternative data sources, and increasing human dimensions understanding. This review provides recommendations for adapting survey design, implementation, and analysis for SES-focused fisheries management. These recommendations are: (1) increasing human dimensions knowledge; (2) standardization of surveys and data; (3) increasing tools and training available to fisheries scientists; and (4) increasing accessibility and availability of data. Incorporation of human dimensions information into creel surveys will increase the ability of fisheries management to regulate these important systems from an integrated SES standpoint.  more » « less
Award ID(s):
1716066
PAR ID:
10287732
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Reviews in Fisheries Science & Aquaculture
ISSN:
2330-8249
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recreational fisheries are culturally and economically important around the world. Recent research emphasizes that understanding and managing these systems requires a social–ecological perspective. We systematically reviewed quantitative social–ecological models of marine and freshwater recreational fisheries to summarize their conceptualization of social, ecological, and social–ecological dynamics and identify research frontiers. From a candidate set of 626 studies published between 1975 and 2018, 49 met criteria for inclusion in our review. These studies, though diverse in terms of focal species and processes considered, were geographically limited to a few locations and ignored large regions of the globe where recreational fishing is important. There were also important gaps in the social and ecological processes that were included in published models. Reflecting on these patterns in the context of previous conceptual frameworks, we define five key frontiers for future work: 1) exploring the implications of social and behavioural processes like heuristics, social norms, and information sharing for angler decisions and fishery dynamics; 2) modelling governance with more realistic complexity; 3) incorporating ideas from resilience thinking and complex adaptive systems, including slow variables, destabilizing feedbacks, surprises and diversity; 4) considering key ideas in fisheries systems, including spatial and temporal effort dynamics, catch hyperstability, and stocking; and 5) thinking synthetically about the models that we use to describe social–ecological dynamics in recreational fisheries, via explicit comparisons and formal integration with data. Exploration of these frontiers, while remembering the distinction between model complexity and model usefulness, will improve our ability to understand and sustain recreational fisheries. 
    more » « less
  2. Growing interest in apps to collect recreational-fisheries data requires that relationships between self-reported data and other fisheries data are evaluated, and that potential biases are assessed. This study compared results from a mobile-phone application and website for anglers (MyCatch) to results from three types of fisheries surveys — 1 provincial-level mail survey, 2 creel, and 17 gillnet surveys. Results suggest that an app and website can (i) recruit users that have a broad spatial distribution that is similar to conventional surveys, (ii) generate data that capture regional fishing patterns (2218 trips on 289 lakes and 90 streams or rivers), and (iii) provide catch rate estimates that are similar to those from other fisheries-dependent surveys. Some potential biases in app users (e.g., urban bias) and in the relative composition of species caught provincially were identified. The app was not a suitable tool for estimating fish abundance and relative community composition. Our study demonstrates how apps can or cannot provide a complementary data-collection tool for recreational-fisheries monitoring, but further research is needed to determine the applicability of our findings to other fisheries contexts. 
    more » « less
  3. Effective management of social-ecological systems (SESs) requires an understanding of human behavior. In many SESs, there are hundreds of agents or more interacting with governance and regulatory institutions, driving management outcomes through collective behavior. Agents in these systems often display consistent behavioral characteristics over time that can help reduce the dimensionality of SES data by enabling the assignment of types. Typologies of resource-user behavior both enrich our knowledge of user cultures and provide critical information for management. Here, we develop a data-driven framework to identify resource-user typologies in SESs with high-dimensional data. To demonstrate policy applications, we apply the framework to a tightly coupled SES, commercial fishing. We leverage large fisheries-dependent datasets that include mandatory vessel logbooks, observer datasets, and high-resolution geospatial vessel tracking technologies. We first quantify vessel and behavioral characteristics using data that encode fishers’ spatial decisions and behaviors. We then use clustering to classify these characteristics into discrete fishing behavioral types (FBTs), determining that 3 types emerge in our case study. Finally, we investigate how a series of disturbances applied selection pressure on these FBTs, causing the disproportionate loss of one group. Our framework not only provides an efficient and unbiased method for identifying FBTs in near real time, but it can also improve management outcomes by enabling ex ante investigation of the consequences of disturbances such as policy actions. 
    more » « less
  4. Rare, but potentially impactful, extreme events in socio-ecological systems (SES) can trigger significant consequences. The scarcity of theoretical frameworks for such events in SES is due to data limitations and difficulty in parameterizing coupled SES models. We explore the effect of extreme events on coupled socio- ecological systems using two stylized case studies: harvesting of old-growth forests and coral reef fisheries. We found that extreme events alter the long-term and transient dynamics of the systems. We identify counter- intuitive situations where the degradation of forests or coral habitat can prevent extinction through social dynamics feedback. Management outcomes show maximum variability at intermediate disturbance frequencies, complicating predictions of ecological recovery. We also found that initial conditions significantly influence system responses to shocks. Our work lays a foundation for future studies on extreme events in socio-ecological dynamics. Future work could explore more detailed models rooted in the literature, especially related to the modeling of the social dynamics. 
    more » « less
  5. Abstract The 2010Deepwater Horizon(DwH) disaster challenged the integrity of the Gulf of Mexico (GOM) large‐marine ecosystem at unprecedented scales, prompting concerns of devastating injury for GOM fisheries in the post‐spill decade. Following the catastrophe, projected economic losses for regional commercial, recreational, and mariculture sectors for the decade after oiling were US$3.7–8.7 billion overall, owing to the vulnerability of economically prized, primarily nearshore taxa that support fishing communities. State and federal fisheries data during 2000–2017 indicated that GOM fishery sectors appeared to serve as remarkable anchors of resilience following the largest accidental marine oil spill in human history. Evidence of post‐disaster impacts on fisheries economies was negligible. Rather, GOM commercial sales during 2010–2017 were US$0.8–1.5 billion above forecasts derived using pre‐spill (2000–2009) trajectories, while pre‐ and post‐spill recreational fishery trends did not differ appreciably. No post‐spill shifts in target species or effort distribution across states were apparent to explain these findings. Unraveling the mechanisms for this unforeseen stability represents an important avenue for understanding the vulnerability or resilience of human–natural systems to future disturbances. FollowingDwH, the causes for fishery responses are likely multifaceted and complex (including exogenous economic forces that typically affect fisheries‐dependent data), but appear partially explained by the relative ecological stability of coastal fishery assemblages despite widespread oiling, which has been corroborated by multiple fishery‐independent surveys across the northern GOM. Additionally, we hypothesize that damage payments to fishermen led to acquisition or retooling of commercial fisheries infrastructure, and subsequent rises in harvest effort. Combined, these social–ecological dynamics likely aided recovery of stressed coastal GOM communities in the years afterDwH, although increased fishing pressure in the post‐spill era may have consequences for future GOM ecosystem structure, function, and resilience. 
    more » « less