Abstract Major oil spills immensely impact the environment and society. Coastal fishery-dependent communities are especially at risk as their fishing grounds are susceptible to closure because of seafood contamination threat. During the Deepwater Horizon (DWH) disaster for example, vast areas of the Gulf of Mexico (GoM) were closed for fishing, resulting in coastal states losing up to a half of their fishery revenues. To predict the effect of future oil spills on fishery-dependent communities in the GoM, we develop a novel framework that combines a state-of-the-art three-dimensional oil-transport model with high-resolution spatial and temporal data for two fishing fleets—bottom longline and bandit-reel—along with data on the social vulnerability of coastal communities. We demonstrate our approach by simulating spills in the eastern and western GoM, calibrated to characteristics of the DWH spill. We find that the impacts of the eastern and western spills are strongest in the Florida and Texas Gulf coast counties respectively both for the bandit-reel and the bottom longline fleets. We conclude that this multimodal spatially explicit quantitative framework is a valuable management tool for predicting the consequences of oil spills at locations throughout the Gulf, facilitating preparedness and efficient resource allocation for future oil-spill events. 
                        more » 
                        « less   
                    
                            
                            Gulf fisheries supported resilience in the decade following unparalleled oiling
                        
                    
    
            Abstract The 2010Deepwater Horizon(DwH) disaster challenged the integrity of the Gulf of Mexico (GOM) large‐marine ecosystem at unprecedented scales, prompting concerns of devastating injury for GOM fisheries in the post‐spill decade. Following the catastrophe, projected economic losses for regional commercial, recreational, and mariculture sectors for the decade after oiling were US$3.7–8.7 billion overall, owing to the vulnerability of economically prized, primarily nearshore taxa that support fishing communities. State and federal fisheries data during 2000–2017 indicated that GOM fishery sectors appeared to serve as remarkable anchors of resilience following the largest accidental marine oil spill in human history. Evidence of post‐disaster impacts on fisheries economies was negligible. Rather, GOM commercial sales during 2010–2017 were US$0.8–1.5 billion above forecasts derived using pre‐spill (2000–2009) trajectories, while pre‐ and post‐spill recreational fishery trends did not differ appreciably. No post‐spill shifts in target species or effort distribution across states were apparent to explain these findings. Unraveling the mechanisms for this unforeseen stability represents an important avenue for understanding the vulnerability or resilience of human–natural systems to future disturbances. FollowingDwH, the causes for fishery responses are likely multifaceted and complex (including exogenous economic forces that typically affect fisheries‐dependent data), but appear partially explained by the relative ecological stability of coastal fishery assemblages despite widespread oiling, which has been corroborated by multiple fishery‐independent surveys across the northern GOM. Additionally, we hypothesize that damage payments to fishermen led to acquisition or retooling of commercial fisheries infrastructure, and subsequent rises in harvest effort. Combined, these social–ecological dynamics likely aided recovery of stressed coastal GOM communities in the years afterDwH, although increased fishing pressure in the post‐spill era may have consequences for future GOM ecosystem structure, function, and resilience. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1926395
- PAR ID:
- 10361814
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 12
- Issue:
- 11
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Pink shrimp (Farfantepenaeus duorarum) are an economically important species in Biscayne Bay, FL, and support both food and bait commercial fisheries. Pink shrimp are also an important food resource for higher trophic level finfish species. This includes those fishes that support Florida’s iconic and highly valued recreational flats fisheries—which have experienced a severe decline in recent decades and may be impacted by the pink shrimp fisheries. Despite their economic and ecological importance, few studies have evaluated the long-term trends in Biscayne Bay’s pink shrimp fisheries. In this study, we evaluated over 30 years (1987–2020) of fisheries-dependent and economic data on the pink shrimp bait and food fisheries in Biscayne Bay with segmented regression to identify trends and potential breakpoints. We also evaluate trends in Biscayne Bay bonefish (Albula vulpes) over 25 years (1993–2018), based on recreational angler interview data, and assess potential interactions with the shrimp fisheries. We found that landings, value, effort, and participation (number of vessels and dealers) in both Biscayne Bay pink shrimp fisheries have exhibited declines from peaks in the late 1990s. No significant trends were detected in annual bonefish catch or catch per unit effort (catch/trip), but fishing effort declined over the time series. We did not find a significant relationship between annual bonefish catch per unit effort and commercial shrimp fishing landings or effort, suggesting that the pink shrimp fisheries are not a primary factor contributing to declines in the Biscayne Bay bonefish fishery.more » « less
- 
            Abstract Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014–2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state.more » « less
- 
            Abstract A network of marine reserves can enhance yield in depleted fisheries by protecting populations, particularly large, old spawners that supply larvae for interspersed fishing grounds. The ability of marine reserves to enhance sustainable fisheries is much less evident. We report empirical evidence of a marine reserve network improving yield regionally for a sustainable spiny lobster fishery, apparently through the spillover of adult lobsters and behavioral adaptation by the fishing fleet. Results of a Before-After, Control-Impact analysis found catch, effort, and Catch-Per-Unit Effort increased after the establishment of marine reserves in the northern region of the fishery where fishers responded by fishing intensively at reserve borders, but declined in the southern region where they vacated once productive fishing grounds. The adaptation of the northern region of the fishery may have been aided by a history of collaboration between fishers, scientists, and managers, highlighting the value of collaborative research and education programs for preparing fisheries to operate productively within a seascape that includes a large marine reserve network.more » « less
- 
            Abstract Recreational fisheries are culturally and economically important around the world. Recent research emphasizes that understanding and managing these systems requires a social–ecological perspective. We systematically reviewed quantitative social–ecological models of marine and freshwater recreational fisheries to summarize their conceptualization of social, ecological, and social–ecological dynamics and identify research frontiers. From a candidate set of 626 studies published between 1975 and 2018, 49 met criteria for inclusion in our review. These studies, though diverse in terms of focal species and processes considered, were geographically limited to a few locations and ignored large regions of the globe where recreational fishing is important. There were also important gaps in the social and ecological processes that were included in published models. Reflecting on these patterns in the context of previous conceptual frameworks, we define five key frontiers for future work: 1) exploring the implications of social and behavioural processes like heuristics, social norms, and information sharing for angler decisions and fishery dynamics; 2) modelling governance with more realistic complexity; 3) incorporating ideas from resilience thinking and complex adaptive systems, including slow variables, destabilizing feedbacks, surprises and diversity; 4) considering key ideas in fisheries systems, including spatial and temporal effort dynamics, catch hyperstability, and stocking; and 5) thinking synthetically about the models that we use to describe social–ecological dynamics in recreational fisheries, via explicit comparisons and formal integration with data. Exploration of these frontiers, while remembering the distinction between model complexity and model usefulness, will improve our ability to understand and sustain recreational fisheries.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
