skip to main content


Title: Belowground interplant carbon transfer promotes soil carbon gains in diverse plant communities
Award ID(s):
1027253 1832042
NSF-PAR ID:
10287759
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soil Biology and Biochemistry
Volume:
159
Issue:
C
ISSN:
0038-0717
Page Range / eLocation ID:
108297
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Leachates of dissolved organic carbon (DOC) from permafrost soils were prepared from soils collected from the North Slope of Alaska in 2018 and 2022. Soil leachates were then either kept in the dark or exposed to light from LEDs at 305 nm (UV) and 405 nm (visible), and then inoculated with native microbial communities and incubated. At the start of the biological incubations, single replicates of the DOC after dark or light treatment and inoculation were assigned accession numbers and analyzed for 14C and 13C at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. At the end of the biological incubations, duplicates of the dissolved inorganic carbon (DIC) in those waters were assigned accession numbers and analyzed for 14C and 13C at the NOSAMS facility. 
    more » « less
  2. Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic, either kept in the dark or exposed to light treatments, and then incubated with native permafrost microbial communities. The radiocarbon (14C) and stable carbon (13C) isotopic compositions of the initial DOC present in the dark or light-exposed permafrost soil leachates and the carbon dioxide (CO2) produced by microbial respiration of dark or light-exposed permafrost DOC were quantified. 
    more » « less
  3. null (Ed.)
    Understanding the effect of carbon on the density of hcp (hexagonal-close-packed) Fe-C alloys is essential for modeling the carbon content in the Earth’s inner core. Previous studies have focused on the equations of state of iron carbides that may not be applicable to the solid inner core that may incorporate carbon as dissolved carbon in metallic iron. Carbon substitution in hcp-Fe and its effect on the density have never been experimentally studied. We investigated the compression behavior of Fe-C alloys with 0.31 and 1.37 wt % carbon, along with pure iron as a reference, by in-situ X-ray diffraction measurements up to 135 GPa for pure Fe, and 87 GPa for Fe-0.31C and 109 GPa for Fe-1.37C. The results show that the incorporation of carbon in hcp-Fe leads to the expansion of the lattice, contrary to the known effect in body-centered cubic (bcc)-Fe, suggesting a change in the substitution mechanism or local environment. The data on axial compressibility suggest that increasing carbon content could enhance seismic anisotropy in the Earth’s inner core. The new thermoelastic parameters allow us to develop a thermoelastic model to estimate the carbon content in the inner core when carbon is incorporated as dissolved carbon hcp-Fe. The required carbon contents to explain the density deficit of Earth’s inner core are 1.30 and 0.43 wt % at inner core boundary temperatures of 5000 K and 7000 K, respectively. 
    more » « less
  4. Herein, the pyridinophanetetradentate ligand 3,6,9-trimethyl-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene, PyNMe 3 , is used to isolate and structurally characterize well-defined organometallic Ni( ii ) and Ni( iii ) complexes bearing the cycloneophyl fragment, an alkyl/aryl C-donor ligand. Furthermore, spectroscopic and cryo-mass spectrometry studies suggest the formation of a transient Ni( iv ) organometallic complex, and its relevance to C–C and C–O bond formation reactivity studies is discussed. 
    more » « less