skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 31, 2025

Title: Untangling Carbon-free Energy Attribution and Carbon Intensity Estimation for Carbon-aware Computing
Award ID(s):
2105494
NSF-PAR ID:
10542656
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400704802
Page Range / eLocation ID:
580 to 588
Format(s):
Medium: X
Location:
Singapore Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. Mechanical force drives distinct chemical reactions; yet, its vectoral nature results in complicated coupling with reaction trajectories. Here, we utilize a physical organic model inspired by the classical Morse potential and its differential forms to identify effective force constant (keff) and reaction energy (ΔE) as key molecular features that govern mechanochemical kinetics. Through a comprehensive experimental and computational investigation with four norborn-2-en-7-one (NEO) mechanophores, we establish the relationship between these features and the force-dependent energetic changes along the reaction pathways. We show that the complex kinetic behavior of the tensioned bonds is generally and quantitatively predicted by a simple multivariate linear regression based on the two easily computed features with a straightforward workflow. These results demonstrate a general mechanistic framework for mechanochemical reactions under tensile force and provide a highly accessible tool for the large-scale computational screening in the design of mechanophores. 
    more » « less
  2. Abstract

    Nitrifying microorganisms, including ammonia‐oxidizing archaea, ammonia‐oxidizing bacteria, and nitrite‐oxidizing bacteria, are the most abundant chemoautotrophs in the ocean and play an important role in the global carbon cycle by fixing dissolved inorganic carbon (DIC) into biomass. The release of organic compounds by these microbes is not well quantified, but may represent an as‐yet unaccounted source of dissolved organic carbon (DOC) available to marine food webs. Here, we provide measurements of cellular carbon and nitrogen quotas, DIC fixation yields and DOC release of 10 phylogenetically diverse marine nitrifiers. All investigated strains released DOC during growth, representing on average 5–15% of the fixed DIC. Changes in substrate concentration and temperature did not affect the proportion of fixed DIC released as DOC, but release rates varied between closely related species. Our results also indicate previous studies may have underestimated DIC fixation yields of marine nitrite oxidizers due to partial decoupling of nitrite oxidation from CO2fixation, and due to lower observed yields in artificial compared to natural seawater medium. The results of this study provide critical values for biogeochemical models of the global carbon cycle, and help to further constrain the implications of nitrification‐fueled chemoautotrophy for marine food‐web functioning and the biological sequestration of carbon in the ocean.

     
    more » « less