skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Generative Model Learning For Blind Spectrum Cartography with NMF-Based Radio Map Disaggregation
Spectrum cartography (SC) aims at estimating the multi-aspect (e.g., space, frequency, and time) interference level caused by multiple emitters from limited measurements. Early SC approaches rely on model assumptions about the radio map, e.g., sparsity and smoothness, which may be grossly violated under critical scenarios, e.g., in the presence of severe shadowing. More recent data-driven methods train deep generative networks to distill parsimonious representations of complex scenarios, in order to enhance performance of SC. The challenge is that the state space of this learning problem is extremely large—induced by different combinations of key problem constituents, e.g., the number of emitters, the emitters’ carrier frequencies, and the emitter locations. Learning over such a huge space can be costly in terms of sample complexity and training time; it also frequently leads to generalization problems. Our method integrates the favorable traits of model and data-driven approaches, which substantially ‘shrinks’ the state space. Specifically, the proposed learning paradigm only needs to learn a generative model for the radio map of a single emitter (as opposed to numerous combinations of multiple emitters), leveraging a nonnegative matrix factorization (NMF)-based emitter disaggregation process. Numerical evidence shows that the proposed method outperforms state-of-the-art purely model-driven and purely data-driven approaches  more » « less
Award ID(s):
2024058 2003082
PAR ID:
10287810
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE ICASSP 2021
Page Range / eLocation ID:
4920 to 4924
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spectrum cartography (SC) techniques craft multi-domain (e.g., space and frequency) radio maps from limited measurements, which is an ill-posed inverse problem. Recent works used low-dimensional priors such as a low tensor rank structure and a deep generative model to assist radio map estimation---with provable guarantees. However, a premise of these approaches is that the sensors are able to send real-valued feedback to a fusion center for SC---yet practical communication systems often use (heavy) quantization for signaling. This work puts forth a limited feedback-based SC framework. Similar to a prior work, a generative adversarial network (GAN)-based deep prior is used in our framework for fending against heavy shadowing. However, instead of using real-valued feedback, a random quantization strategy is adopted and a maximum likelihood estimation (MLE) criterion is proposed. Analysis shows that the MLE provably recovers the radio map, under reasonable conditions. Simulations are conducted to showcase the effectiveness of the proposed approach. 
    more » « less
  2. Spectrum cartography aims at estimating power propagation patterns over a geographical region across multiple frequency bands (i.e., a radio map)—from limited samples taken sparsely over the region. Classic cartography methods are mostly concerned with recovering the aggregate radio frequency (RF) information while ignoring the constituents of the radio map—but fine-grained emitter-level RF information is of great interest. In addition, many existing cartography methods explicitly or implicitly assume random spatial sampling schemes that may be difficult to implement, due to legal/privacy/security issues. The theoretical aspects (e.g., identifiability of the radio map) of many existing methods are also unclear. In this work, we propose a joint radio map recovery and disaggregation method that is based on coupled block-term tensor decomposition. Our method guarantees identifiability of the individual radio map of each emitter (thereby that of the aggregate radio map as well), under realistic conditions. The identifiability result holds under a large variety of geographical sampling patterns, including a number of pragmatic systematic sampling strategies. We also propose effective optimization algorithms to carry out the formulated radio map disaggregation problems. Extensive simulations are employed to showcase the effectiveness of the proposed approach. 
    more » « less
  3. Spectrum cartography aims at estimating the pattern of wideband signal power propagation over a region of interest (i.e. the radio map)—from limited samples taken sparsely over the region. Classical cartography methods are mostly concerned with recovering the aggregate radio frequency (RF) information while ignoring the constituents of the radio map---but fine-grained emitter-level RF information is of great interest. In addition, most existing cartography methods are based on random geographical sampling that is considered difficult to implement in some cases, due to legal/privacy/security issues. The theoretical aspects (e.g., identifiability of the radio map) of many existing methods are also unclear. In this work, we propose a radio map disaggregation method that is based on coupled block-term tensor decomposition. Our method guarantees identifiability of the individual wideband radio map of each emitter in the geographical region of interest (thereby that of the aggregate radio map as well), under some realistic conditions. The identifiability result holds under a large variety of geographical sampling patterns, including many pragmatic systematic sampling strategies. We also propose an effective optimization algorithm to carry out the formulated coupled tensor decomposition problem. 
    more » « less
  4. The study of generative models is a promising branch of deep learning techniques, which has been successfully applied to different scenarios, such as Artificial Intelligence and the Internet of Things. While in most of the existing works, the generative models are realized as a centralized structure, raising the threats of security and privacy and the overburden of communication costs. Rare efforts have been committed to investigating distributed generative models, especially when the training data comes from multiple heterogeneous sources under realistic IoT settings. In this paper, to handle this challenging problem, we design a federated generative model framework that can learn a powerful generator for the hierarchical IoT systems. Particularly, our generative model framework can solve the problem of distributed data generation on multi-source heterogeneous data in two scenarios, i.e., feature related scenario and label related scenario. In addition, in our federated generative models, we develop a synchronous and an asynchronous updating methods to satisfy different application requirements. Extensive experiments on a simulated dataset and multiple real datasets are conducted to evaluate the data generation performance of our proposed generative models through comparison with the state-of-the-arts. 
    more » « less
  5. In this paper, we propose a novel transient full-chip thermal map estimation method for multi-core commercial CPU based on the data-driven generative adversarial learning method. We treat the thermal modeling problem as an image-generation problem using the generative neural networks. In stead of using traditional functional unit powers as input, the new models are directly based on the measurable real-time high level chip utilizations and thermal sensor information of commercial chips without any assumption of additional physical sensors requirement. The resulting thermal map estimation method, called {\it ThermGAN} can provide tool-accurate full-chip {\it transient} thermal maps from the given performance monitor traces of commercial off-the-shelf multi-core processors. In our work, both generator and discriminator are composed of simple convolutional layers with Wasserstein distance as loss function. ThermGAN can provide the transient and real-time thermal map without using any historical data for training and inferences, which is contrast with a recent RNN-based thermal map estimation method in which historical data is needed. Experimental results show the trained model is very accurate in thermal estimation with an average RMSE of 0.47C, namely, 0.63\% of the full-scale error. Our data further show that the speed of the model is faster than 7.5ms per inference, which is two orders of magnitude faster than the traditional finite element based thermal analysis. Furthermore, the new method is about 4x more accurate than recently proposed LSTM-based thermal map estimation method and has faster inference speed. It also achieves about 2x accuracy with much less computational cost than a state-of-the-art pre-silicon based estimation method. 
    more » « less