skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fairness-Aware Online Meta-learning
Fairness in AI and Machine Learning is emerging to be a crucial research area to ensure social good. In contrast to offline working fashions, two research paradigms are devised for online learning: (1) Online Meta-Learning (OML learns good priors over model parameters (or learning to learn) in a sequential setting where tasks are revealed one after another. Although it provides a sub-linear regret bound, such techniques completely ignore the importance of learning with fairness which is a significant hallmark of human intelligence. (2) Online Fairness-Aware Learning that captures many classification problems for which fairness is a concern. But it aims to attain zero-shot generalization without any task-specific adaptation. This, therefore, limits the capability of a model to adapt to newly arrived data. To overcome such issues and bridge the gap, this paper is the first to propose a novel online meta-learning algorithm, namely FFML, which is under the setting of unfairness prevention. The key part of FFML is to learn good priors of an online fair classification model's primal and dual parameters that are associated with the model's accuracy and fairness, respectively. The problem is formulated in the form of a bi-level convex-concave optimization. The theoretic analysis provides sub-linear upper bounds for loss regret and violation of cumulative fairness constraints. The experiments demonstrate the versatility of FFML by applying it to classification on three real-world datasets and show substantial improvements over the best prior work on the tradeoff between fairness and classification accuracy.  more » « less
Award ID(s):
1954409
PAR ID:
10287831
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
Page Range / eLocation ID:
2294-2304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fairness in AI and Machine Learning is emerging to be a crucial research area to ensure social good. In contrast to offline working fashions, two research paradigms are devised for online learning: (1) Online Meta-Learning (OML learns good priors over model parameters (or learning to learn) in a sequential setting where tasks are revealed one after another. Although it provides a sub-linear regret bound, such techniques completely ignore the importance of learning with fairness which is a significant hallmark of human intelligence. (2) Online Fairness-Aware Learning that captures many classification problems for which fairness is a concern. But it aims to attain zero-shot generalization without any task-specific adaptation. This, therefore, limits the capability of a model to adapt to newly arrived data. To overcome such issues and bridge the gap, this paper is the first to propose a novel online meta-learning algorithm, namely FFML, which is under the setting of unfairness prevention. The key part of FFML is to learn good priors of an online fair classification model's primal and dual parameters that are associated with the model's accuracy and fairness, respectively. The problem is formulated in the form of a bi-level convex-concave optimization. The theoretic analysis provides sub-linear upper bounds for loss regret and violation of cumulative fairness constraints. The experiments demonstrate the versatility of FFML by applying it to classification on three real-world datasets and show substantial improvements over the best prior work on the tradeoff between fairness and classification accuracy. 
    more » « less
  2. The fairness-aware online learning framework has emerged as a potent tool within the context of continuous lifelong learning. In this scenario, the learner’s objective is to progressively acquire new tasks as they arrive over time, while also guaranteeing statistical parity among various protected sub-populations, such as race and gender when it comes to the newly introduced tasks. A significant limitation of current approaches lies in their heavy reliance on the i.i.d (independent and identically distributed) assumption concerning data, leading to a static regret analysis of the framework. Nevertheless, it’s crucial to note that achieving low static regret does not necessarily translate to strong performance in dynamic environments characterized by tasks sampled from diverse distributions. In this article, to tackle the fairness-aware online learning challenge in evolving settings, we introduce a unique regret measure, FairSAR, by incorporating long-term fairness constraints into a strongly adapted loss regret framework. Moreover, to determine an optimal model parameter at each time step, we introduce an innovative adaptive fairness-aware online meta-learning algorithm, referred to as FairSAOML. This algorithm possesses the ability to adjust to dynamic environments by effectively managing bias control and model accuracy. The problem is framed as a bi-level convex-concave optimization, considering both the model’s primal and dual parameters, which pertain to its accuracy and fairness attributes, respectively. Theoretical analysis yields sub-linear upper bounds for both loss regret and the cumulative violation of fairness constraints. Our experimental evaluation of various real-world datasets in dynamic environments demonstrates that our proposed FairSAOML algorithm consistently outperforms alternative approaches rooted in the most advanced prior online learning methods. 
    more » « less
  3. null (Ed.)
    The problem of learning to generalize on unseen classes during the training step, also known as few-shot classification, has attracted considerable attention. Initialization based methods, such as the gradient-based model agnostic meta-learning (MAML) [1], tackle the few-shot learning problem by “learning to fine-tune”. The goal of these approaches is to learn proper model initialization so that the classifiers for new classes can be learned from a few labeled examples with a small number of gradient update steps. Few shot meta-learning is well-known with its fast-adapted capability and accuracy generalization onto unseen tasks [2]. Learning fairly with unbiased outcomes is another significant hallmark of human intelligence, which is rarely touched in few-shot meta-learning. In this work, we propose a novel Primal-Dual Fair Meta-learning framework, namely PDFM, which learns to train fair machine learning models using only a few examples based on data from related tasks. The key idea is to learn a good initialization of a fair model’s primal and dual parameters so that it can adapt to a new fair learning task via a few gradient update steps. Instead of manually tuning the dual parameters as hyperparameters via a grid search, PDFM optimizes the initialization of the primal and dual parameters jointly for fair meta-learning via a subgradient primal-dual approach. We further instantiate an example of bias controlling using decision boundary covariance (DBC) [3] as the fairness constraint for each task, and demonstrate the versatility of our proposed approach by applying it to classification on a variety of three real-world datasets. Our experiments show substantial improvements over the best prior work for this setting. 
    more » « less
  4. We consider the problem of online learning in the linear contextual bandits setting, but in which there are also strong individual fairness constraints governed by an unknown similarity metric. These constraints demand that we select similar actions or individuals with approximately equal probability, which may be at odds with optimizing reward, thus modeling settings where profit and social policy are in tension. We assume we learn about an unknown Mahalanobis similarity metric from only weak feedback that identifies fairness violations, but does not quantify their extent. This is intended to represent the interventions of a regulator who “knows unfairness when he sees it” but nevertheless cannot enunciate a quantitative fairness metric over individuals. Our main result is an algorithm in the adversarial context setting that has a number of fairness violations that depends only logarithmically on T, while obtaining an optimal O(√T) regret bound to the best fair policy. 
    more » « less
  5. We consider an online learning problem with one-sided feedback, in which the learner is able to observe the true label only for positively predicted instances. On each round, k instances arrive and receive classification outcomes according to a randomized policy deployed by the learner, whose goal is to maximize accuracy while deploying individually fair policies. We first extend the framework of Bechavod et al. (2020), which relies on the existence of a human fairness auditor for detecting fairness violations, to instead incorporate feedback from dynamically-selected panels of multiple, possibly inconsistent, auditors. We then construct an efficient reduction from our problem of online learning with one-sided feedback and a panel reporting fairness violations to the contextual combinatorial semi-bandit problem (Cesa-Bianchi & Lugosi, 2009, György et al., 2007). Finally, we show how to leverage the guarantees of two algorithms in the contextual combinatorial semi-bandit setting: Exp2 (Bubeck et al., 2012) and the oracle-efficient Context-Semi-Bandit-FTPL (Syrgkanis et al., 2016), to provide multi-criteria no regret guarantees simultaneously for accuracy and fairness. Our results eliminate two potential sources of bias from prior work: the "hidden outcomes" that are not available to an algorithm operating in the full information setting, and human biases that might be present in any single human auditor, but can be mitigated by selecting a well chosen panel. 
    more » « less