skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An extreme climate gradient-induced ecological regionalization in the Upper Cretaceous Western Interior Basin of North America
The Upper Cretaceous Western Interior Basin of North America provides a unique laboratory for constraining the effects of spatial climate patterns on the macroevolution and spatiotemporal distribution of biological communities across geologic timescales. Previous studies suggested that Western Interior Basin terrestrial ecosystems were divided into distinct southern and northern communities, and that this provincialism was maintained by a putative climate barrier at ∼50°N paleolatitude; however, this climate barrier hypothesis has yet to be tested. We present mean annual temperature (MAT) spatial interpolations for the Western Interior Basin that confirm the presence of a distinct terrestrial climate barrier in the form of a MAT transition zone between 48°N and 58°N paleolatitude during the final 15 m.y. of the Cretaceous. This transition zone was characterized by steep latitudinal temperature gradients and divided the Western Interior Basin into warm southern and cool northern biomes. Similarity analyses of new compilations of fossil pollen and leaf records from the Western Interior Basin suggest that the biogeographical distribution of primary producers in the Western Interior Basin was heavily influenced by the presence of this temperature transition zone, which in turn may have impacted the distribution of the entire trophic system across western North America.  more » « less
Award ID(s):
1925973
PAR ID:
10287880
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
GSA Bulletin
ISSN:
0016-7606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The spectacular fossil fauna and flora preserved in the Upper Cretaceous terrestrial strata of North America’s Western Interior Basin record an exceptional peak in the diversification of fossil vertebrates in the Campanian, which has been termed the ‘zenith of dinosaur diversity’. The wide latitudinal distribution of rocks and fossils that represent this episode, spanning from northern Mexico to the northern slopes of Alaska, provides a unique opportunity to gain insights into dinosaur paleoecology and to address outstanding questions regarding faunal provinciality in connection to paleogeography and climate. Whereas reliable basin-wide correlations are fundamental to investigations of this sort, three decades of radioisotope geochronology of various vintages and limited compatibility has complicated correlation of distant fossil-bearing successions and given rise to contradictory paleobiogeographic and evolutionary hypotheses. Here we present new U–Pb geochronology by the CA-ID-TIMS method for 16 stratigraphically well constrained bentonite beds, ranging in age from 82.419 ± 0.074 Ma to 73.496 ± 0.039 Ma (2σ internal uncertainties), and the resulting Bayesian age models for six key fossil-bearing formations over a 1600 km latitudinal distance from northwest New Mexico, USA to southern Alberta, Canada. Our high-resolution chronostratigraphic framework for the upper Campanian of the Western Interior Basin reveals that despite their contrasting depositional settings and basin evolution histories, significant age overlap exists between the main fossil-bearing intervals of the Kaiparowits Formation (southern Utah), Judith River Formation (central Montana), Two Medicine Formation (western Montana) and Dinosaur Park Formation (southern Alberta). Pending more extensive paleontologic collecting that would allow more rigorous faunal analyses, our results support a first-order connection between paleoecologic and fossil diversities and help overcome the chronostratigraphic ambiguities that have impeded the testing of proposed models of latitudinal provinciality of dinosaur taxa during the Campanian. 
    more » « less
  2. The “mid-Cretaceous” (~125–80 Ma) was punctuated by major plate-tectonic upheavals resulting in widespread volcanism, mountain-building, eustatic sea-level changes, and climatic shifts that together had a profound impact on terrestrial biotic assemblages. Paleontological evidence suggests terrestrial ecosystems underwent a major restructuring during this interval, yet the pace and pattern are poorly constrained. Current impediments to piecing together the geologic and biological history of the “mid-Cretaceous” include a relative paucity of terrestrial outcrop stemming from this time interval, coupled with a historical understudy of fragmentary strata. In the Western Interior of North America, sedimentary strata of the Turonian–Santonian stages are emerging as key sources of data for refining the timing of ecosystem transformation during the transition from the late-Early to early-Late Cretaceous. In particular, the Moreno Hill Formation (Zuni Basin, New Mexico) is especially important for detailing the timing of the rise of iconic Late Cretaceous vertebrate faunas. This study presents the first systematic geochronological framework for key strata within the Moreno Hill Formation. Based on the double-dating of (U-Pb) detrital zircons, via CA-TIMS and LA-ICP-MS, we interpret two distinct depositional phases of the Moreno Hill Formation (initial deposition after 90.9 Ma (middle Turonian) and subsequent deposition after 88.6 Ma (early Coniacian)), younger than previously postulated based on correlations with marine biostratigraphy. Sediment and the co-occurring youthful subset of zircons are sourced from the southwestern Cordilleran Arc and Mogollon Highlands, which fed into the landward portion of the Gallup Delta (the Moreno Hill Formation) via northeasterly flowing channel complexes. This work greatly strengthens linkages to other early Late Cretaceous strata across the Western Interior. 
    more » « less
  3. Mammals rose to prominence in terrestrial ecosystems after the Cretaceous–Paleogene mass extinction, but the mammalian lineages characteristic of Paleogene faunas began their evolutionary and ecological diversification in the Late Cretaceous, stimulated by the rise of angiosperms (flowering plants) according to the preeminent hy- pothesis. The Cretaceous rise of mammals is part of a larger expansion in biodiversity on land that has been termed the Cretaceous (or Angiosperm) Terrestrial Revolution, but the mechanisms underlying its initiation remain opaque. Here, we review data from the fossil and rock records of western North America—due to its relatively continuous fossil record and complete chronology of mountain-building events—to explore the role that tectonism might have played in catalyzing the rise of modern-aspect terrestrial biodiversity, especially that of mammals and angiosperms. We highlight that accelerated increases in mammal and angiosperm species richness in the Late Cretaceous, ca. 100–75 Ma, track the acceleration of tectonic processes that formed the North American Cordillera and occurred during the ‘middle-Cretaceous greenhouse’ climate. This rapid increase in both mammal and angiosperm diversity also occurred during the zenith of Western Interior Seaway trans- gression, a period when the availability of lowland habitats was at its minimum, and oscillatory transgression- regression cycles would have frequently forced upland range shifts among lowland populations. These changes to both landscapes and climates have all been linked to an abrupt, global tectonic-plate ‘reorganization’ that occurred ca. 100 Ma. That mammals and angiosperms both increased in species richness during this interval does not appear to be a taphonomic artifact—some of the largest spikes in diversity occur when the available mammal-bearing fossil localities are sparse. Noting that mountainous regions are engines for generating biodi- versity, especially in warm climates, we propose that the Cretaceous/Angiosperm Terrestrial Revolution was ultimately catalyzed by accelerated tectonism and enhanced via cascading changes to landscapes and climate. In the fossil record of individual basins across western North America, we predict that (1) increases in mammalian diversity through the Late Cretaceous should be positively correlated with rates of tectonic uplift, which we infer to be a proxy for topographic relief, and are attended by increased climate heterogeneity, (2) the diversity of mountain-proximal mammalian assemblages should exceed that of coeval mountain-distal assemblages, espe- cially in the latest Cretaceous, and (3) endemism should increase from the latest Cretaceous to early Paleogene as Laramide mountain belts fragmented the Western Interior. Empirical tests of these predictions will require increased fossil collecting in under-sampled regions and time intervals, description and systematic study of existing collections, and basin-scale integration of geological and paleontological data. Testing these predictions will further our understanding of the coevolutionary processes linking tectonics, climate, and life throughout Earth history. 
    more » « less
  4. Liu, Jun (Ed.)
    Intensifying macrovertebrate reconnaissance together with refined age-dating of mid-Cretaceous assemblages in recent decades is producing a more nuanced understanding of the impact of the Cretaceous Thermal Maximum on terrestrial ecosystems. Here we report discovery of a new early-diverging ornithopod, Iani smithi gen. et sp. nov., from the Cenomanian-age lower Mussentuchit Member, Cedar Mountain Formation of Utah, USA. The single known specimen of this species (NCSM 29373) includes a well-preserved, disarticulated skull, partial axial column, and portions of the appendicular skeleton. Apomorphic traits are concentrated on the frontal, squamosal, braincase, and premaxilla, including the presence of three premaxillary teeth. Phylogenetic analyses using parsimony and Bayesian inference posit Iani as a North American rhabdodontomorph based on the presence of enlarged, spatulate teeth bearing up to 12 secondary ridges, maxillary teeth lacking a primary ridge, a laterally depressed maxillary process of the jugal, and a posttemporal foramen restricted to the squamosal, among other features. Prior to this discovery, neornithischian paleobiodiversity in the Mussentuchit Member was based primarily on isolated teeth, with only the hadrosauroid Eolambia caroljonesa named from macrovertebrate remains. Documentation of a possible rhabdodontomorph in this assemblage, along with published reports of an as-of-yet undescribed thescelosaurid, and fragmentary remains of ankylosaurians and ceratopsians confirms a minimum of five, cohabiting neornithischian clades in earliest Late Cretaceous terrestrial ecosystems of North America. Due to poor preservation and exploration of Turonian–Santonian assemblages, the timing of rhabdodontomorph extirpation in the Western Interior Basin is, as of yet, unclear. However, Iani documents survival of all three major clades of Early Cretaceous neornithischians (Thescelosauridae, Rhabdodontomorpha, and Ankylopollexia) into the dawn of the Late Cretaceous of North America. 
    more » « less
  5. The uplift history of the Sierra Nevada, California, is a topic of long-standing disagreement with much of it centered on the timing and nature of slip along the range-bounding normal fault along the east flank of the southern Sierra Nevada. The history of normal fault slip is important for characterizing the uplift history of the Sierra Nevada, as well as for characterizing the geologic and geodynamic factors that drove, and continue to drive, normal faulting. To address these issues, we completed new structural studies and extensive apatite (U-Th)/He (AHe) thermochronometry on samples collected from three vertical transects in the footwall to the east-dipping southern Sierra Nevada normal fault (SNNF). Our structural studies on bedrock fault planes show that the SNNF is a steeply (~70°) east-dipping normal fault. The new AHe data reveal two elevation-invariant AHe age arrays, indicative of two distinct periods of cooling and exhumation, which we interpret as initiation of normal faulting along the SNNF at ca. 28–27 Ma with a second phase of normal faulting at ca. 17–13 Ma. We argue that beginning in the late Oligocene, the SNNF marked the now long-standing stable western limit, or break-away zone, of the Basin and Range. Slip along SNNF, and the associated unloading of the footwall, likely resulted in two periods of uplift of Sierra Nevada during the late Cenozoic. Trench retreat, driven by westward motion of the North American plate, along the Farallon–North American subduction zone boundary, as well as the gravitationally unstable northern and southern Basin and Range pushing on the cold Sierra Nevada, likely drove the late Oligocene- aged normal slip along the SNNF and the similar-aged but generally local and minor extension within the Basin and Range. We posit that the thick proto–Basin and Range lithosphere was primed for late Oligocene extension by replacement of the steepening Farallon slab with hot and buoyant asthenosphere. While steepening of the Farallon slab had not yet reached the southern Sierra Nevada by late Oligocene time, we speculate that late Oligocene slip along the SNNF reactivated a late Cretaceous dextral shear zone as the Sierra Nevada block was pulled and pushed westward in response to trench retreat and gravitational potential energy. The dominant middle Miocene normal fault-slip history along the SNNF is contemporaneous with high-magnitude slip recorded along range-bounding normal faults across the Basin and Range, including the east-adjacent Inyo and White mountains, indicating that this period of extension was a major regional tectonic event. We infer that a combination of slab-driven trench retreat along the Juan de Fuca–North America subduction zone boundary and clockwise rotation of the southern ancestral Cascade Range superimposed on continental lithosphere pre-conditioned for extension drove this episode of middle Miocene normal slip along the SNNF and extension to the east across the Basin and Range. Transtensional plate motion along the Pacific–North America plate boundary, and likely a growing slab window, continued to drive extension along the SNNF and the western Basin and Range, but not until ca. 11 Ma when the Mendocino triple junction reached the latitude of our northernmost (U-Th)/He transect. 
    more » « less