skip to main content


This content will become publicly available on April 28, 2024

Title: Cenozoic slip along the southern Sierra Nevada normal fault, California (USA): A long-lived stable western boundary of the Basin and Range
The uplift history of the Sierra Nevada, California, is a topic of long-standing disagreement with much of it centered on the timing and nature of slip along the range-bounding normal fault along the east flank of the southern Sierra Nevada. The history of normal fault slip is important for characterizing the uplift history of the Sierra Nevada, as well as for characterizing the geologic and geodynamic factors that drove, and continue to drive, normal faulting. To address these issues, we completed new structural studies and extensive apatite (U-Th)/He (AHe) thermochronometry on samples collected from three vertical transects in the footwall to the east-dipping southern Sierra Nevada normal fault (SNNF). Our structural studies on bedrock fault planes show that the SNNF is a steeply (~70°) east-dipping normal fault. The new AHe data reveal two elevation-invariant AHe age arrays, indicative of two distinct periods of cooling and exhumation, which we interpret as initiation of normal faulting along the SNNF at ca. 28–27 Ma with a second phase of normal faulting at ca. 17–13 Ma. We argue that beginning in the late Oligocene, the SNNF marked the now long-standing stable western limit, or break-away zone, of the Basin and Range. Slip along SNNF, and the associated unloading of the footwall, likely resulted in two periods of uplift of Sierra Nevada during the late Cenozoic. Trench retreat, driven by westward motion of the North American plate, along the Farallon–North American subduction zone boundary, as well as the gravitationally unstable northern and southern Basin and Range pushing on the cold Sierra Nevada, likely drove the late Oligocene- aged normal slip along the SNNF and the similar-aged but generally local and minor extension within the Basin and Range. We posit that the thick proto–Basin and Range lithosphere was primed for late Oligocene extension by replacement of the steepening Farallon slab with hot and buoyant asthenosphere. While steepening of the Farallon slab had not yet reached the southern Sierra Nevada by late Oligocene time, we speculate that late Oligocene slip along the SNNF reactivated a late Cretaceous dextral shear zone as the Sierra Nevada block was pulled and pushed westward in response to trench retreat and gravitational potential energy. The dominant middle Miocene normal fault-slip history along the SNNF is contemporaneous with high-magnitude slip recorded along range-bounding normal faults across the Basin and Range, including the east-adjacent Inyo and White mountains, indicating that this period of extension was a major regional tectonic event. We infer that a combination of slab-driven trench retreat along the Juan de Fuca–North America subduction zone boundary and clockwise rotation of the southern ancestral Cascade Range superimposed on continental lithosphere pre-conditioned for extension drove this episode of middle Miocene normal slip along the SNNF and extension to the east across the Basin and Range. Transtensional plate motion along the Pacific–North America plate boundary, and likely a growing slab window, continued to drive extension along the SNNF and the western Basin and Range, but not until ca. 11 Ma when the Mendocino triple junction reached the latitude of our northernmost (U-Th)/He transect.  more » « less
Award ID(s):
1753440
NSF-PAR ID:
10424310
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geosphere
ISSN:
1553-040X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The topographic development of the Sierra Nevada, CA has been the topic of research for more than 100 years, yet disagreement remains as to whether 1) the Sierra Nevada records uplift in the late Mesozoic followed by no change or a decrease in elevation throughout the Cenozoic vs 2) uplift in the late Mesozoic followed by a decrease in elevation during the middle Cenozoic, and a second pulse of uplift in the late Cenozoic. The second pulse of uplift in the late Cenozoic is linked to late Cenozoic normal slip along the southern Sierra Nevada (SSN) range front normal fault (SSNF). To test this fault slip hypothesis, we report apatite (U-Th/He) (AHe) results from samples in the footwall of the SSNF collected along three vertical transects (from north to south, RV, MW, and MU) up the eastern escarpment of the SSN. Here, exposed bedrock fault planes and associated joints yield nearly identical strike-dip values of ~356°-69°NE. At the RV transect, 14 AHe samples record an elevation invariant mean age of 17.8 ± 5.3 Ma over a vertical distance of 802 m. At MW, 14 samples collected over a vertical distance of 1043 m yield an elevation invariant mean age of 26.6 ± 5.0 Ma. At MU, 8 samples record an elevation invariant mean age of 12.7 ± 3.7 Ma over a vertical distance of 501 m and 5 higher elevation samples record an elevation invariant mean age of 26.5 ± 3.3 Ma. At MU, the lowest elevation sample yielded an AFT age of 50 Ma and mean track length of 13.1 microns. Preliminary HeFTy modeling of the AHe and AFT ages from this sample yield accelerated cooling at ~22 Ma and ~10 Ma. Preliminary modeling (Pecube + landscape evolution) of the MU AHe results, elevation, and a prominent knickpoint yield an increase in fault slip rate at ~1-2 Ma. We interpret the elevation invariant ages and modeling results as indicating three periods—late Oligocene, middle Miocene, and Pliocene—of cooling and exhumation in the footwall of the SSNF due to normal fault slip. Our results are the first to document late Oligocene to Pliocene cooling and normal slip along the SSNF. Miocene and Pliocene age normal fault slip along the SSNF is contemporaneous with normal slip along range bounding faults across the Basin and Range, including the adjacent Inyo and White Mountains. Combined, these data indicate that since the late Oligocene the SSN defined the stable western limit of the Basin and Range. 
    more » « less
  2. Abstract The Ruby Mountains–East Humboldt Range–Wood Hills–Pequop Mountains (REWP) metamorphic core complex, northeast Nevada, exposes a record of Mesozoic contraction and Cenozoic extension in the hinterland of the North American Cordillera. The timing, magnitude, and style of crustal thickening and succeeding crustal thinning have long been debated. The Pequop Mountains, comprising Neoproterozoic through Triassic strata, are the least deformed part of this composite metamorphic core complex, compared to the migmatitic and mylonitized ranges to the west, and provide the clearest field relationships for the Mesozoic–Cenozoic tectonic evolution. New field, structural, geochronologic, and thermochronological observations based on 1:24,000-scale geologic mapping of the northern Pequop Mountains provide insights into the multi-stage tectonic history of the REWP. Polyphase cooling and reheating of the middle-upper crust was tracked over the range of <100 °C to 450 °C via novel 40Ar/39Ar multi-diffusion domain modeling of muscovite and K-feldspar and apatite fission-track dating. Important new observations and interpretations include: (1) crosscutting field relationships show that most of the contractional deformation in this region occurred just prior to, or during, the Middle-Late Jurassic Elko orogeny (ca. 170–157 Ma), with negligible Cretaceous shortening; (2) temperature-depth data rule out deep burial of Paleozoic stratigraphy, thus refuting models that incorporate large cryptic overthrust sheets; (3) Jurassic, Cretaceous, and Eocene intrusions and associated thermal pulses metamorphosed the lower Paleozoic–Proterozoic rocks, and various thermochronometers record conductive cooling near original stratigraphic depths; (4) east-draining paleovalleys with ∼1–1.5 km relief incised the region before ca. 41 Ma and were filled by 41–39.5 Ma volcanic rocks; and (5) low-angle normal faulting initiated after the Eocene, possibly as early as the late Oligocene, although basin-generating extension from high-angle normal faulting began in the middle Miocene. Observed Jurassic shortening is coeval with structures in the Luning-Fencemaker thrust belt to the west, and other strain documented across central-east Nevada and Utah, suggesting ∼100 km Middle-Late Jurassic shortening across the Sierra Nevada retroarc. This phase of deformation correlates with terrane accretion in the Sierran forearc, increased North American–Farallon convergence rates, and enhanced Jurassic Sierran arc magmatism. Although spatially variable, the Cordilleran hinterland and the high plateau that developed across it (i.e., the hypothesized Nevadaplano) involved a dynamic pulsed evolution with significant phases of both Middle-Late Jurassic and Late Cretaceous contractional deformation. Collapse long postdated all of this contraction. This complex geologic history set the stage for the Carlin-type gold deposit at Long Canyon, located along the eastern flank of the Pequop Mountains, and may provide important clues for future exploration. 
    more » « less
  3. The Alaska Range suture zone exposes Cretaceous to Quaternary marine and nonmarine sedimentary and volcanic rocks sandwiched between oceanic rocks of the accreted Wrangellia composite terrane to the south and older continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and AFT cooling ages, geochemical compositions, and geological field observations from these rocks provide improved constraints on the timing of Cretaceous to Miocene magmatism, sedimentation, and deformation within the collisional suture zone. Our results bear on the unclear displacement history of the seismically active Denali fault, which bisects the suture zone. Newly identified tuffs north of the Denali fault in sedimentary strata of the Cantwell Formation yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and high concentrations of incompatible elements attributed to slab contribution (e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together with regionally extensive coeval calc-alkaline plutons, record arc magmatism during contractional deformation and metamorphism within the suture zone. Latest Cretaceous volcanic and sedimentary strata are locally overlain by Eocene Teklanika Formation volcanic rocks with geochemical compositions transitional between arc and intraplate affinity. New detrital-zircon data from the modern Teklanika River indicate peak Teklanika volcanism at ca. 57 Ma, which is also reflected in zircon Pb loss in Cantwell Formation bentonites. Teklanika Formation volcanism may reflect hypothesized slab break-off and a Paleocene–Eocene period of a transform margin configuration. Mafic dike swarms were emplaced along the Denali fault from ca. 38 to ca. 25 Ma based on new 40Ar/39Ar ages. Diking along the Denali fault may have been localized by strike-slip extension following a change in direction of the subducting oceanic plate beneath southern Alaska from N-NE to NW at ca. 46–40 Ma. Diking represents the last recorded episode of significant magmatism in the central and eastern Alaska Range, including along the Denali fault. Two tectonic models may explain emplacement of more primitive and less extensive Eocene–Oligocene magmas: delamination of the Late Cretaceous–Paleocene arc root and/or thickened suture zone lithosphere, or a slab window created during possible Paleocene slab break-off. Fluvial strata exposed just south of the Denali fault in the central Alaska Range record synorogenic sedimentation coeval with diking and inferred strike-slip displacement. Deposition occurred ca. 29 Ma based on palynomorphs and the youngest detrital zircons. U-Pb detrital-zircon geochronology and clast compositional data indicate the fluvial strata were derived from sedimentary and igneous bedrock presently exposed within the Alaska Range, including Cretaceous sources presently exposed on the opposite (north) side of the fault. The provenance data may indicate ~150 km or more of dextral offset of the ca. 29 Ma strata from inferred sediment sources, but different amounts of slip are feasible. Together, the dike swarms and fluvial strata are interpreted to record Oligocene strike-slip movement along the Denali fault system, coeval with strike-slip basin development along other segments of the fault. Diking and sedimentation occurred just prior to the onset of rapid and persistent exhumation ca. 25 Ma across the Alaska Range. This phase of reactivation of the suture zone is interpreted to reflect the translation along and convergence of southern Alaska across the Denali fault driven by highly coupled flat-slab subduction of the Yakutat microplate, which continues to accrete to the southern margin of Alaska. Furthermore, a change in Pacific plate direction and velocity at ca. 25 Ma created a more convergent regime along the apex of the Denali fault curve, likely contributing to the shutting off of near-fault extension- facilitated arc magmatism along this section of the fault system and increased exhumation rates. 
    more » « less
  4. null (Ed.)
    SUMMARY The Eastern Mediterranean is the most seismically active region in Europe due to the complex interactions of the Arabian, African, and Eurasian tectonic plates. Deformation is achieved by faulting in the brittle crust, distributed flow in the viscoelastic lower-crust and mantle, and Hellenic subduction, but the long-term partitioning of these mechanisms is still unknown. We exploit an extensive suite of geodetic observations to build a kinematic model connecting strike-slip deformation, extension, subduction, and shear localization across Anatolia and the Aegean Sea by mapping the distribution of slip and strain accumulation on major active geological structures. We find that tectonic escape is facilitated by a plate-boundary-like, trans-lithospheric shear zone extending from the Gulf of Evia to the Turkish-Iranian Plateau that underlies the surface trace of the North Anatolian Fault. Additional deformation in Anatolia is taken up by a series of smaller-scale conjugate shear zones that reach the upper mantle, the largest of which is located beneath the East Anatolian Fault. Rapid north–south extension in the western part of the system, driven primarily by Hellenic Trench retreat, is accommodated by rotation and broadening of the North Anatolian mantle shear zone from the Sea of Marmara across the north Aegean Sea, and by a system of distributed transform faults and rifts including the rapidly extending Gulf of Corinth in central Greece and the active grabens of western Turkey. Africa–Eurasia convergence along the Hellenic Arc occurs at a median rate of 49.8 mm yr–1 in a largely trench-normal direction except near eastern Crete where variably oriented slip on the megathrust coincides with mixed-mode and strike-slip deformation in the overlying accretionary wedge near the Ptolemy–Pliny–Strabo trenches. Our kinematic model illustrates the competing roles the North Anatolian mantle shear zone, Hellenic Trench, overlying mantle wedge, and active crustal faults play in accommodating tectonic indentation, slab rollback and associated Aegean extension. Viscoelastic flow in the lower crust and upper mantle dominate the surface velocity field across much of Anatolia and a clear transition to megathrust-related slab pull occurs in western Turkey, the Aegean Sea and Greece. Crustal scale faults and the Hellenic wedge contribute only a minor amount to the large-scale, regional pattern of Eastern Mediterranean interseismic surface deformation. 
    more » « less
  5. The relationships between brittle detachment faulting and ductile shear zones in metamorphic core complexes are often ambiguous. Although it is commonly assumed that these two structures are kinematically linked and genetically related, direct observations of this coupling are rare. Here, we conducted a detailed field investigation to probe the connection between a detachment fault and mylonitic shear zone in the Ruby Mountain–East Humboldt Range metamorphic core complex, northeast Nevada. Field observations, along with new and published geochronology, demonstrate that Oligocene top-to-the-west mylonitic shear zones are crosscut by ca. 17 Ma subvertical basalt dikes, and these dikes are in turn truncated by middle Miocene detachment faults. The detachment faults appear to focus in preexisting weak zones in shaley strata and Mesozoic thrust faults. We interpret that the Oligocene mylonitic shear zones were generated in response to domal upwelling during voluminous plutonism and partial melting, which significantly predated the middle Miocene onset of regional extension and detachment slip. Our model simplifies mechanical issues with low-angle detachment faulting because there was an initial dip to the weak zones exploited by the future detachment-fault zone. This mechanism may be important for many apparent low-angle normal faults in the eastern Great Basin. We suggest that the temporal decoupling of mylonitic shearing and detachment faulting may be significant and underappreciated for many of the metamorphic core complexes in the North American Cordillera. In this case, earlier Eocene–Oligocene buoyant doming may have preconditioned the crust to be reactivated by Miocene extension thus explaining the spatial relationship between structures. 
    more » « less