skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling the impact of COVID-19 on air quality in southern California: implications for future control policies
Abstract. In response to the coronavirus disease of 2019 (COVID-19),California issued statewide stay-at-home orders, bringing about abrupt anddramatic reductions in air pollutant emissions. This crisis offers us anunprecedented opportunity to evaluate the effectiveness of emissionreductions in terms of air quality. Here we use the Weather Research and Forecastingmodel with Chemistry (WRF-Chem) in combination with surface observations tostudy the impact of the COVID-19 lockdown measures on air quality insouthern California. Based on activity level statistics and satelliteobservations, we estimate the sectoral emission changes during the lockdown.Due to the reduced emissions, the population-weighted concentrations of fineparticulate matter (PM2.5) decrease by 15 % in southernCalifornia. The emission reductions contribute 68 % of the PM2.5concentration decrease before and after the lockdown, while meteorologyvariations contribute the remaining 32 %. Among all chemical compositions,the PM2.5 concentration decrease due to emission reductions isdominated by nitrate and primary components. For O3 concentrations, theemission reductions cause a decrease in rural areas but an increase in urbanareas; the increase can be offset by a 70 % emission reduction inanthropogenic volatile organic compounds (VOCs). These findings suggest thata strengthened control on primary PM2.5 emissions and a well-balancedcontrol on nitrogen oxides and VOC emissions are needed to effectively andsustainably alleviate PM2.5 and O3 pollution in southernCalifornia.  more » « less
Award ID(s):
1660587
PAR ID:
10287899
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
11
ISSN:
1680-7324
Page Range / eLocation ID:
8693 to 8708
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The recent COVID-19 pandemic has prompted global governments to take several measures to limit and contain the spread of the novel virus. In the United States (US), most states have imposed a partial to complete lockdown that has led to decreased traffic volumes and reduced vehicle emissions. In this study, we investigate the impacts of the pandemic-related lockdown on air quality in the US using remote sensing products for nitrogen dioxide tropospheric column (NO2), carbon monoxide atmospheric column (CO), tropospheric ozone column (O3), and aerosol optical depth (AOD). We focus on states with distinctive anomalies and high traffic volume, New York (NY), Illinois (IL), Florida (FL), Texas (TX), and California (CA). We evaluate the effectiveness of reduced traffic volume to improve air quality by comparing the significant reductions during the pandemic to the interannual variability (IAV) of a respective reference period for each pollutant. We also investigate and address the potential factors that might have contributed to changes in air quality during the pandemic. As a result of the lockdown and the significant reduction in traffic volume, there have been reductions in CO and NO2. These reductions were, in many instances, compensated by local emissions and, or affected by meteorological conditions. Ozone was reduced by varying magnitude in all cases related to the decrease or increase of NO2 concentrations, depending on ozone photochemical sensitivity. Regarding the policy impacts of this large-scale experiment, our results indicate that reduction of traffic volume during the pandemic was effective in improving air quality in regions where traffic is the main pollution source, such as in New York City and FL, while was not effective in reducing pollution events where other pollution sources dominate, such as in IL, TX and CA. Therefore, policies to reduce other emissions sources (e.g., industrial emissions) should also be considered, especially in places where the reduction in traffic volume was not effective in improving air quality (AQ). 
    more » « less
  2. The emergence of the novel corona virus and the resulting lockdowns over various parts of the world have substantially impacted air quality due to reduced anthropogenic activity. The objective of this study is to investigate the impact of COVID-19 lockdown and Spring Festival on air quality of four major cities of Yangtze River Delta (YRD) region, including Shanghai, Nanjing, Hefei, and Hangzhou. In situ measurements were taken for nitrogen dioxide (NO2), particulate matter (PM2.5) and ozone (O3). In situ measurements from 1 January to 25 April were taken two years prior to COVID-19 (2018–19), during COVID-19 lockdown (2020), and one year after the COVID-19 (2021). The results indicated that the concentration of NO2 and PM2.5 dropped considerably during the lockdown days compared to normal days while the O3 concentration showed an upsurge. The NO2 showed reduction of about 54% on average during lockdown level 1 in 2020 whereas, PM 2.5 showed reduction of about 36% through the YRD. A substantial drop was observed in concentration of NO2 during the Spring Festival holidays throughout the YRD from 2019 to 2021. 
    more » « less
  3. Abstract. Our work explores the impact of two important dimensions of landsystem changes, land use and land cover change (LULCC) as well as directagricultural reactive nitrogen (Nr) emissions from soils, on ozone(O3) and fine particulate matter (PM2.5) in terms of air quality overcontemporary (1992 to 2014) timescales. We account for LULCC andagricultural Nr emissions changes with consistent remote sensingproducts and new global emission inventories respectively estimating theirimpacts on global surface O3 and PM2.5 concentrations as well as Nrdeposition using the GEOS-Chem global chemical transport model. Over thistime period, our model results show that agricultural Nr emissionchanges cause a reduction of annual mean PM2.5 levels over Europe andnorthern Asia (up to −2.1 µg m−3) while increasing PM2.5 levels in India, China and the eastern US (up to +3.5 µg m−3). Land cover changes induce small reductions in PM2.5 (up to −0.7 µg m−3) over Amazonia, China and India due to reduced biogenic volatile organic compound (BVOC) emissions and enhanced deposition of aerosol precursor gases (e.g., NO2, SO2). Agricultural Nr emissionchanges only lead to minor changes (up to ±0.6 ppbv) in annual meansurface O3 levels, mainly over China, India and Myanmar. Meanwhile, ourmodel result suggests a stronger impact of LULCC on surface O3 over the time period across South America; the combination of changes in drydeposition and isoprene emissions results in −0.8 to +1.2 ppbv surfaceozone changes. The enhancement of dry deposition reduces the surface ozone level (up to −1 ppbv) over southern China, the eastern US and central Africa. The enhancement of soil NO emission due to crop expansion also contributes to surface ozone changes (up to +0.6 ppbv) over sub-Saharan Africa. Incertain regions, the combined effects of LULCC and agricultural Nr emission changes on O3 and PM2.5 air quality can be comparable (>20 %) to anthropogenic emission changes over the same time period. Finally, we calculate that the increase in global agricultural Nr emissions leads to a net increase in global land area (+3.67×106km2) that potentially faces exceedance of the critical Nr load (>5 kg N ha−1 yr−1). Our result demonstrates the impacts of contemporary LULCC and agricultural Nr emission changes on PM2.5 and O3 in terms of air quality, as well as the importanceof land system changes for air quality over multidecadal timescales. 
    more » « less
  4. A regional modeling system that integrates the state-of-the-art emissions processing (SMOKE), climate (CWRF), and air quality (CMAQ) models has been combined with satellite measurements of fire activities to assess the impact of fire emissions on the contiguous United States (CONUS) air quality during 1997–2016. The system realistically reproduced the spatiotemporal distributions of the observed meteorology and surface air quality, with a slight overestimate of surface ozone (O3) by ~4% and underestimate of surface PM2.5 by ~10%. The system simulation showed that the fire impacts on primary pollutants such as CO were generally confined to the fire source areas but its effects on secondary pollutants like O3 spread more broadly. The fire contribution to air quality varied greatly during 1997-2016 and occasionally accounted for more than 100 ppbv of monthly mean surface CO and over 20 µg m−3 of monthly mean PM2.5 in the Northwest U.S. and Northern California, two regions susceptible to frequent fires. Fire emissions also had implications on air quality compliance. From 1997 to 2016, fire emissions increased surface 8-hour O3 standard exceedances by 10% and 24-hour PM2.5 exceedances by 33% over CONUS. 
    more » « less
  5. We present a novel source attribution approach that incorporates satellite data into GEOS-Chem adjoint simulations to characterize the species-specific, regional, and sectoral contributions of daily emissions for 3 air pollutants: fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2). This approach is implemented for Washington, DC, first for 2011, to identify urban pollution sources, and again for 2016, to examine the pollution response to changes in anthropogenic emissions. In 2011, anthropogenic emissions contributed an estimated 263 (uncertainty: 130–444) PM2.5- and O3-attributable premature deaths and 1,120 (391–1795) NO2 attributable new pediatric asthma cases in DC. PM2.5 exposure was responsible for 90% of these premature deaths. On-road vehicle emissions contributed 51% of NO2-attributable new asthma cases and 23% of pollution-attributable premature deaths, making it the largest contributing individual sector to DC’s air pollution–related health burden. Regional emissions, originating from Maryland, Virginia, and Pennsylvania, were the most responsible for pollution-related health impacts in DC, contributing 57% of premature deaths impacts and 89% of asthma cases. Emissions from distant states contributed 34% more to PM2.5 exposure in the wintertime than in the summertime, occurring in parallel with strong wintertime westerlies and a reduced photochemical sink. Emission reductions between 2011 and 2016 resulted in health benefits of 76 (28–149) fewer pollution-attributable premature deaths and 227 (2–617) fewer NO2-attributable pediatric asthma cases. The largest sectors contributing to decreases in pollution-related premature deaths were energy generation units (26%) and on-road vehicles (20%). Decreases in NO2-attributable pediatric asthma cases were mostly due to emission reductions from on-road vehicles (63%). Emission reductions from energy generation units were found to impact PM2.5 more than O3, while on-road vehicle emission reductions impacted O3 proportionally more than PM2.5. This novel method is capable of capturing the sources of urban pollution at fine spatial and temporal scales and is applicable to many urban environments, globally. 
    more » « less