skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying the Impacts of COVID-19 Lockdown and Spring Festival on Air Quality over Yangtze River Delta Region
The emergence of the novel corona virus and the resulting lockdowns over various parts of the world have substantially impacted air quality due to reduced anthropogenic activity. The objective of this study is to investigate the impact of COVID-19 lockdown and Spring Festival on air quality of four major cities of Yangtze River Delta (YRD) region, including Shanghai, Nanjing, Hefei, and Hangzhou. In situ measurements were taken for nitrogen dioxide (NO2), particulate matter (PM2.5) and ozone (O3). In situ measurements from 1 January to 25 April were taken two years prior to COVID-19 (2018–19), during COVID-19 lockdown (2020), and one year after the COVID-19 (2021). The results indicated that the concentration of NO2 and PM2.5 dropped considerably during the lockdown days compared to normal days while the O3 concentration showed an upsurge. The NO2 showed reduction of about 54% on average during lockdown level 1 in 2020 whereas, PM 2.5 showed reduction of about 36% through the YRD. A substantial drop was observed in concentration of NO2 during the Spring Festival holidays throughout the YRD from 2019 to 2021.  more » « less
Award ID(s):
2030425
PAR ID:
10321416
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmosphere
Volume:
12
Issue:
6
ISSN:
2073-4433
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The spread of the COVID-19 pandemic and consequent lockdowns all over the world have had various impacts on atmospheric quality. This study aimed to investigate the impact of the lockdown on the air quality of Nanjing, China. The off-axis measurements from state-of-the-art remote-sensing Multi-Axis Differential Optical Absorption Spectroscope (MAX-DOAS) were used to observe the trace gases, i.e., Formaldehyde (HCHO), Nitrogen Dioxide (NO2), and Sulfur Dioxide (SO2), along with the in-situ time series of NO2, SO2 and Ozone (O3). The total dataset covers the span of five months, from 1 December 2019, to 10 May 2020, which comprises of four phases, i.e., the pre lockdown phase (1 December 2019, to 23 January 2020), Phase-1 lockdown (24 January 2020, to 26 February 2020), Phase-2 lockdown (27 February 2020, to 31 March 2020), and post lockdown (1 April 2020, to 10 May 2020). The observed results clearly showed that the concentrations of selected pollutants were lower along with improved air quality during the lockdown periods (Phase-1 and Phase-2) with only the exception of O3, which showed an increasing trend during lockdown. The study concluded that limited anthropogenic activities during the spring festival and lockdown phases improved air quality with a significant reduction of selected trace gases, i.e., NO2 59%, HCHO 38%, and SO2 33%. We also compared our results with 2019 data for available gases. Our results imply that the air pollutants concentration reduction in 2019 during Phase-2 was insignificant, which was due to the business as usual conditions after the Spring Festival (Phase-1) in 2019. In contrast, a significant contamination reduction was observed during Phase-2 in 2020 with the enforcement of a Level-II response in lockdown conditions i.e., the easing of the lockdown situation in some sectors during a specific interval of time. The observed ratio of HCHO to NO2 showed that tropospheric ozone production involved Volatile Organic Compounds (VOC) limited scenarios. 
    more » « less
  2. null (Ed.)
    Abstract. In response to the coronavirus disease of 2019 (COVID-19),California issued statewide stay-at-home orders, bringing about abrupt anddramatic reductions in air pollutant emissions. This crisis offers us anunprecedented opportunity to evaluate the effectiveness of emissionreductions in terms of air quality. Here we use the Weather Research and Forecastingmodel with Chemistry (WRF-Chem) in combination with surface observations tostudy the impact of the COVID-19 lockdown measures on air quality insouthern California. Based on activity level statistics and satelliteobservations, we estimate the sectoral emission changes during the lockdown.Due to the reduced emissions, the population-weighted concentrations of fineparticulate matter (PM2.5) decrease by 15 % in southernCalifornia. The emission reductions contribute 68 % of the PM2.5concentration decrease before and after the lockdown, while meteorologyvariations contribute the remaining 32 %. Among all chemical compositions,the PM2.5 concentration decrease due to emission reductions isdominated by nitrate and primary components. For O3 concentrations, theemission reductions cause a decrease in rural areas but an increase in urbanareas; the increase can be offset by a 70 % emission reduction inanthropogenic volatile organic compounds (VOCs). These findings suggest thata strengthened control on primary PM2.5 emissions and a well-balancedcontrol on nitrogen oxides and VOC emissions are needed to effectively andsustainably alleviate PM2.5 and O3 pollution in southernCalifornia. 
    more » « less
  3. null (Ed.)
    The recent COVID-19 pandemic has prompted global governments to take several measures to limit and contain the spread of the novel virus. In the United States (US), most states have imposed a partial to complete lockdown that has led to decreased traffic volumes and reduced vehicle emissions. In this study, we investigate the impacts of the pandemic-related lockdown on air quality in the US using remote sensing products for nitrogen dioxide tropospheric column (NO2), carbon monoxide atmospheric column (CO), tropospheric ozone column (O3), and aerosol optical depth (AOD). We focus on states with distinctive anomalies and high traffic volume, New York (NY), Illinois (IL), Florida (FL), Texas (TX), and California (CA). We evaluate the effectiveness of reduced traffic volume to improve air quality by comparing the significant reductions during the pandemic to the interannual variability (IAV) of a respective reference period for each pollutant. We also investigate and address the potential factors that might have contributed to changes in air quality during the pandemic. As a result of the lockdown and the significant reduction in traffic volume, there have been reductions in CO and NO2. These reductions were, in many instances, compensated by local emissions and, or affected by meteorological conditions. Ozone was reduced by varying magnitude in all cases related to the decrease or increase of NO2 concentrations, depending on ozone photochemical sensitivity. Regarding the policy impacts of this large-scale experiment, our results indicate that reduction of traffic volume during the pandemic was effective in improving air quality in regions where traffic is the main pollution source, such as in New York City and FL, while was not effective in reducing pollution events where other pollution sources dominate, such as in IL, TX and CA. Therefore, policies to reduce other emissions sources (e.g., industrial emissions) should also be considered, especially in places where the reduction in traffic volume was not effective in improving air quality (AQ). 
    more » « less
  4. Abstract. With a few exceptions, most studies on tropospheric ozone (O3) variability during and following the COrona VIrus Disease (COVID-19) economic downturn focused on high-emission regions or urban environments. In this work, we investigated the impact of the societal restriction measures during the COVID-19 pandemic on surface O3 at several high-elevation sites across North America and western Europe. Monthly O3 anomalies were calculated for 2020 and 2021, with respect to the baseline period 2000–2019, to explore the impact of the economic downturn initiated in 2020 and its recovery in 2021. In total, 41 high-elevation sites were analyzed: 5 rural or mountaintop stations in western Europe, 19 rural sites in the western US, 4 sites in the western US downwind of highly polluted source regions, and 4 rural sites in the eastern US, plus 9 mountaintop or high-elevation sites outside Europe and the United States to provide a “global” reference. In 2020, the European high-elevation sites showed persistent negative surface O3 anomalies during spring (March–May, i.e., MAM) and summer (June–August, i.e., JJA), except for April. The pattern was similar in 2021, except for June. The rural sites in the western US showed similar behavior, with negative anomalies in MAM and JJA 2020 (except for August) and MAM 2021. The JJA 2021 seasonal mean was influenced by strong positive anomalies in July due to large and widespread wildfires across the western US. The polluted sites in the western US showed negative O3 anomalies during MAM 2020 and a slight recovery in 2021, resulting in a positive mean anomaly for MAM 2021 and a pronounced month-to-month variability in JJA 2021 anomalies. The eastern US sites were also characterized by below-mean O3 for both MAM and JJA 2020, while in 2021 the negative values exhibited an opposite structure compared to the western US sites, which were influenced by wildfires. Concerning the rest of the world, a global picture could not be drawn, as the sites, spanning a range of different environments, did not show consistent anomalies, with a few sites not experiencing any notable variation. Moreover, we also compared our surface anomalies to the variability of mid-tropospheric O3 detected by the IASI (Infrared Atmospheric Sounding Interferometer) satellite instrument. Negative anomalies were observed by IASI, consistent with published satellite and modeling studies, suggesting that the anomalies can be largely attributed to the reduction of O3 precursor emissions in 2020. 
    more » « less
  5. Abstract Background The spatiotemporal variation of observed trace gases (NO 2 , SO 2 , O 3 ) and particulate matter (PM 2.5 , PM 10 ) were investigated over cities of Yangtze River Delta (YRD) region including Nanjing, Hefei, Shanghai and Hangzhou. Furthermore, the characteristics of different pollution episodes, i.e., haze events (visibility < 7 km, relative humidity < 80%, and PM 2.5  > 40 µg/m 3 ) and complex pollution episodes (PM 2.5  > 35 µg/m 3 and O 3  > 160 µg/m 3 ) were studied over the cities of the YRD region. The impact of China clean air action plan on concentration of aerosols and trace gases is examined. The impacts of trans-boundary pollution and different meteorological conditions were also examined. Results The highest annual mean concentrations of PM 2.5 , PM 10 , NO 2 and O 3 were found for 2019 over all the cities. The annual mean concentrations of PM 2.5 , PM 10 , and NO 2 showed continuous declines from 2019 to 2021 due to emission control measures and implementation of the Clean Air Action plan over all the cities of the YRD region. The annual mean O 3 levels showed a decline in 2020 over all the cities of YRD region, which is unprecedented since the beginning of the China’s National environmental monitoring program since 2013. However, a slight increase in annual O 3 was observed in 2021. The highest overall means of PM 2.5 , PM 10 , SO 2 , and NO 2 were observed over Hefei, whereas the highest O 3 levels were found in Nanjing. Despite the strict control measures, PM 2.5 and PM 10 concentrations exceeded the Grade-1 National Ambient Air Quality Standards (NAAQS) and WHO (World Health Organization) guidelines over all the cities of the YRD region. The number of haze days was higher in Hefei and Nanjing, whereas the complex pollution episodes or concurrent occurrence of O 3 and PM 2.5 pollution days were higher in Hangzhou and Shanghai. The in situ data for SO 2 and NO 2 showed strong correlation with Tropospheric Monitoring Instrument (TROPOMI) satellite data. Conclusions Despite the observed reductions in primary pollutants concentrations, the secondary pollutants formation is still a concern for major metropolises. The increase in temperature and lower relative humidity favors the accumulation of O 3 , while low temperature, low wind speeds and lower relative humidity favor the accumulation of primary pollutants. This study depicts different air pollution problems for different cities inside a region. Therefore, there is a dire need to continuous monitoring and analysis of air quality parameters and design city-specific policies and action plans to effectively deal with the metropolitan pollution. 
    more » « less