skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Charge distributions and oxidation states in Mn-based oxidants from ab initio molecular dynamics simulation
We used ab initio molecular dynamics simulations to address Mn oxidation states in different Mn systems. We first develop a correlation between Mn partial atomic charge and the oxidation state, based on results of 31 simulations on known Mn aqueous complexes. The results collapse to a master curve; the dependence of partial atomic charge on oxidation state weakens with increasing oxidation state, which concurs with a previously proposed feedback effect. This correlation is then used to address oxidation states in Mn systems used as oxidants. Simulations of MnO2 polymorphs immersed in water give average oxidation states (AOS) in excellent agreement with experimental results, in that b-MnO2 has the highest AOS, a-MnO2 has an intermediate AOS, and d-MnO2 has the lowest AOS. Furthermore, the oxidation state varies substantially with the atom’s environment, and these structures include Mn(III) and Mn(V) species that are expected to be active. In regard to the MnO4−/HSO3−/O2 system that has been shown to be a highly effective oxidant, we propose a novel Mn complex that could give rise to the oxidative activity, where Mn(III) is stabilized by sulfite and dissolved O2 ligands. Our simulations also show that the O2 would be activated to O22- in this complex under acidic conditions, and could lead to the formation of OH radicals that serve as oxidants.  more » « less
Award ID(s):
1808406
PAR ID:
10288081
Author(s) / Creator(s):
Date Published:
Journal Name:
Chemosphere
Volume:
In review
ISSN:
0045-6535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Manganese (Mn) is an essential element for life. Although its concentration is at (sub)nanomolar levels throughout the ocean, it affects the oxygen concentration of the ocean because it is central to the photosynthetic formation of dioxygen, O2, in photosystem center II. Mn inputs into the ocean are from atmospheric transport of particles and their dissolution to form dissolved Mn, and from the flux of dissolved Mn from rivers, sediments and hydrothermal vents. The main removal mechanism is transport of particulate Mn from dust and organic matter to the sediments. The environmental chemistry of manganese centers on its +2, +3 and +4 oxidation states. Most recent data show that Mn(II) is dissolved, that Mn(IV) is particulate MnO2, and that Mn(III) can be particulate or dissolved when bound to organic complexes [denoted as Mn(III)-L]. Mn(II) is oxidized primarily by microbial processes whereas MnO2 is reduced by abiotic and biotic processes. Photochemical processing aids redox cycling in surface waters. In suboxic zones, which are defined as areas with dissolved O2 concentrations below 3 M, both oxidation and reduction processes can occur but usually at different depths. In suboxic zones, dissolved Mn is also released from organic matter during its decomposition and from MnO2 reduction. 
    more » « less
  2. The para-N-pyridyl-based PCP pincer ligand 3,5-bis(di-tert-butylphosphinomethyl)-2,6-dimethylpyridine (pN-tBuPCP-H) was synthesized and metalated to give the iridium complex (pN tBuPCP)IrHCl (2-H). In marked contrast with its phenyl-based congeners (tBuPCP)IrHCl and derivatives, 2-H is highly air sensitive and reacts with oxidants such as ferrocenium, trityl cation, and benzoquinone. These oxidations ultimately lead to intramolecular activation of a phosphino-t-butyl C(sp3)-H bond and cyclometalation. Considering the greater electronegativity of N than C, 2-H is expected to be less easily oxidized than simple PCP derivatives; DFT calculations of direct one-electron oxidations are in good agreement with this expectation. However, 2-H is calculated to undergo metal-ligand-proton tautomerism (MLPT) to give an N-protonated complex that can be described with resonance forms representing a zwitterionic complex (negative charge on Ir) and a p-N-pyridylidene (remote NHC) Ir(I) complex. One-electron oxidation of this tautomer is calculated to be dramatically more favorable than direct oxidation of 2-H (G° = 31.3 kcal/mol). The resulting Ir(II) oxidation product is easily deprotonated to give metalloradical 2• which is observed by NMR spectroscopy. 2• can be further oxidized to give cationic Ir(III) complex, 2+, which can oxidatively add a phosphino-t butyl C-H bond, and undergo deprotonation to give the observed cyclometalated product. DFT calculations indicate that less sterically hindered complexes would preferentially undergo intermolecular addition of C(sp3)-H bonds, for example, of n alkanes. The resulting iridium alkyl complexes could undergo facile -H elimination to afford olefin, thereby completing a catalytic cycle for alkane dehydrogenation that is driven by one-electron oxidation and deprotonation, enabled by MLPT. 
    more » « less
  3. Manganese (Mn) oxide solids widely exist in nature, serving as both electron donors and acceptors for a variety of redox reactions. Previous studies have highlighted the adsorption of dissolved organic matter (DOM) on Mn oxides, as well as the reduction of Mn oxides by DOM. Here, we show the underappreciated roles of photolytic reactions of DOM in Mn2+(aq) oxidation and its consequential formation of Mn oxide solids. During the photolysis of DOM, reactive intermediates including excited triplet state DOM (3DOM*), hydroxyl radical (•OH), superoxide radical (O2•−), hydrogen peroxide (H2O2), and singlet oxygen (1O2) can be generated. Among them, we found that O2•− was responsible for Mn oxidation. In addition, in the presence of bromide ions (Br−), the photolytic reactions between DOM and Br− formed reactive bromide radicals and facilitated the oxidation of Mn2+(aq) to Mn oxide solids. Moreover, the composition of DOM affected its oxidative capability. When DOM contained more aromatic functional groups, we observed more oxidation of Mn2+ to Mn oxides. These new findings advance our knowledge of natural Mn2+ oxidation and Mn(III/IV) oxide formation, as well as the hitherto overlooked oxidative role of DOM in the oxidation of metal ions in surface water under sunlight illumination. 
    more » « less
  4. Dissolved natural organic matter (DOM) is a complex matrix of organic matter that is ubiquitous in natural aquatic environments. So far, substantial research has been conducted on the DOM adsorption on Mn oxides as well as the reduction processes of Mn oxides by DOM. However, little is known about the oxidative roles of DOM in oxidizing Mn2+(aq) to Mn(III/IV) oxide solids. Sunlight-driven processes can initiate the degradation of DOM accompanied by the formation of photochemically produced reactive intermediates, including excited triplet state DOM (3DOM*), hydroxyl radical (•OH), superoxide radical (O2•−), hydrogen peroxide (H2O2), and singlet oxygen (1O2). Further, in the presence of halide ions, reactive halogen species can be generated by reactions between 3DOM* and halide ions, and by reactions between •OH and halide ions. In this study, we found that the solution pH controlled the oxidation of Mn2+(aq) to Mn oxide solids during photolysis of DOM. Among the reactive oxygen species, Mn2+(aq) was found to be oxidized to Mn oxide solids mainly by O2•−. The DOM with different quantities of aromatic functional groups affected its oxidative capability. With the addition of bromide ions (Br−), Mn2+(aq) oxidation was promoted further by formation Br radicals, which can also oxidize Mn2+(aq) to Mn oxide solids. These findings can help us better understand the oxidative role of DOM in the formation of Mn oxide solids in organic-rich surface water. In addition, this study assists in comprehending the impacts of the photolytic reactions between DOM and halide ions and their resulting reactive oxygen and halogen species on the oxidation and reduction processes of other transition metal oxides in the environment. 
    more » « less
  5. Synthetic manganese catalysts that activate hydrogen peroxide perform a variety of hydrocarbon oxidation reactions. The most commonly proposed mechanism for these catalysts involves the generation of a manganese(iii)-hydroperoxo intermediate that decays via heterolytic O–O bond cleavage to generate a Mn( v)-oxo species that initiates substrate oxidation. Due to the paucity of well-defined Mn(III)-hydroperoxo complexes, Mn(III)-alkylperoxo complexes are often employed to understand the factors that affect the O–O cleavage reaction. Herein, we examine the decay pathways of the Mn(III)-alkylperoxo complexes [Mn(III)(OOtBu)(6Me dpaq)]+ and [Mn(III)(OOtBu)(N4S)]+, which have distinct coordination environments (N5− and N4S− , respectively). Through the use of density functional theory (DFT) calculations and comparisons with published experimental data, we are able to rationalize the differences in the decay pathways of these complexes. For the [Mn(III)(OOtBu)(N4S)]+ system, O–O homolysis proceeds via a two-state mechanism that involves a crossing from the quintet reactant to a triplet state. A high energy singlet state discourages O–O heterolysis for this complex. In contrast, while quintet–triplet crossing is unfavorable for [Mn(III)(OOtBu)(6Medpaq)]+, a relatively low-energy single state accounts for the observation of both O–O homolysis and heterolysis products for this complex. The origins of these differences in decay pathways are linked to variations in the electronic structures of the Mn(III)-alkylperoxo complexes. 
    more » « less